Skip to main content
Log in

Preparation of Er3+:Y3Al5O12/TiO2 composite film and influence of layer number and layer sequence on the visible-light photocatalytic activity

  • Photochemistry and Magnetochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this work, the Er3+:Y3Al5O12 as up-conversion luminescence agent was mixed with TiO2 and the corresponding Er3+:Y3Al5O12/TiO2 composite films were prepared on the one-sided surface of treated sheet glass through sol-gel dip-coating method. The prepared Er3+:Y3Al5O12/TiO2 composite films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Their photocatalytic activities were examined through the degradation of some organic dyes under visible-light irradiation. The degradation process of organic dyes was monitored by UV-Vis spectrophotometer. Furthermore, some main influence factors on the visible-light photocatalytic activity of Er3+:Y3Al5O12/TiO2 composite film such as heat-treatment temperature and heat-treatment time were studied. The results indicate that three layer Er3+:Y3Al5O12/TiO2 composite films with one Er3+:Y3Al5O12/TiO2 composite film (as first layer close to sheet glass) and two pure TiO2 film (as second and third layers) display a higher visible-light photocatalytic activity during photocatalytic degradation of Azo Fuchsine. In addition, the results showed that the visible-light photocatalytic activity of Er3+:Y3Al5O12/TiO2 composite film related to the layer number and layer sequence on the sheet glass. Perhaps, the research results may offer some meaningful references for developing solar energy continuous flow wastewater treatment reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Jung, S. J. Kim, N. Imaishi, et al., Appl. Catal. B: Environ. 55, 253 (2005).

    Article  CAS  Google Scholar 

  2. N. Arconada, Y. Castro, A. Duran, et al., Appl. Catal. B: Environ. 107, 52 (2011).

    Article  CAS  Google Scholar 

  3. J. Fu, Mater. Lett. 68, 419 (2012).

    Article  CAS  Google Scholar 

  4. T. Ji, F. Yang, H. Du, et al., J. Rare Earth 28, 529 (2010).

    Article  CAS  Google Scholar 

  5. M. S. Kim, G. Liu, W. K. Nam, et al., J. Ind. Eng. Chem. 17, 223 (2011).

    Article  CAS  Google Scholar 

  6. F. J. Beltrán, F. J. Rivas, and R. M. Espinosa, Appl. Catal. B: Environ. 47, 101 (2004).

    Article  Google Scholar 

  7. Y. J. Zang and R. Farnood, Appl. Catal. B: Environ. 79, 334 (2008).

    Article  CAS  Google Scholar 

  8. L. Li, Y. Yang, X. Liu, et al., Appl. Surf. Sci. 265, 36 (2013).

    Article  CAS  Google Scholar 

  9. A. Jirapat, K. Puangrat, and S. Supapan, J. Hazard. Mater. 168, 253 (2009).

    Article  Google Scholar 

  10. F. Dong, H. Wang, G. Sen, et al., J. Hazard. Mater. 187, 509 (2011).

    Article  CAS  Google Scholar 

  11. Y. H. Ng, S. Ikeda, M. Matsumura, et al., Energy Environ. Sci. 5, 9307 (2012).

    Article  CAS  Google Scholar 

  12. J. Wang, R. Li, Z. Zhang, et al., Appl. Catal. A: Gen. 334, 227 (2008).

    Article  CAS  Google Scholar 

  13. J. Wang, G. Zhang, Z. Zhang, et al., Water Res. 40, 2143 (2006).

    Article  CAS  Google Scholar 

  14. L. Yin, J. Gao, J. Wang, et al., Sep. Purif. Technol. 81, 94 (2011).

    Article  CAS  Google Scholar 

  15. J. Gao, R. Jiang, J. Wang, et al., Chem. Eng. J. 168, 1041 (2011).

    Article  CAS  Google Scholar 

  16. L. Yin, Y. Li, J. Wang, et al., J. Luminesc. 132, 3010 (2012).

    Article  CAS  Google Scholar 

  17. X. Xu, D. Yin, S. Wu, et al., Ceram. Int. 36, 443 (2010).

    Article  CAS  Google Scholar 

  18. H. Choi, E. Stathatos, and D. D. Dionysiou, Desalination 202, 199 (2007).

    Article  CAS  Google Scholar 

  19. D. Jung, G. Kim, M. S. Kim, et al., Korean J. Chem. Eng. 29, 703 (2012).

    Article  CAS  Google Scholar 

  20. J. Zitaa, J. K. Sa, U. Cernigoj, et al., Catal. Today 161, 29 (2011).

    Article  Google Scholar 

  21. G. Balasubramanian, D. D. Dionysiou, M. T. Suidan, et al., Appl. Catal. B: Environ. 47, 73 (2004).

    Article  CAS  Google Scholar 

  22. A. Kimoto and S. Shimada, Sensor. Actuat. A 175, 150 (2012).

    Article  CAS  Google Scholar 

  23. S. Suárez, N. Arconada, Y. Castro, et al., Appl. Catal. B: Environ. 108–109, 14 (2011).

    Article  Google Scholar 

  24. S. H. Nam, S. J. Cho, C. K. Jung, et al., Thin Solid Films 519, 6944 (2011).

    Article  CAS  Google Scholar 

  25. D. Stanoi, A. Popescu, C. Ghica, et al., Appl. Surf. Sci. 253, 8268 (2007).

    Article  CAS  Google Scholar 

  26. N. Barati, M. A. Faghihi Sani, H. Ghasemi, et al., Appl. Surf. Sci. 255, 8328 (2009).

    Article  CAS  Google Scholar 

  27. N. N. Zu, H. G. Yang, and Z. W. Dai, Physica B 403, 174 (2008).

    Article  CAS  Google Scholar 

  28. H. L. Xu and Z. K. Jiang, Chem. Phys. 287, 155 (2003).

    Article  CAS  Google Scholar 

  29. H. G. Yang, Z. W. Dai, and Z. W. Sun, J. Luminesc. 124, 207 (2007).

    Article  Google Scholar 

  30. H. Xu, Z. Dai, and Z. Jiang, Eur. Phys. J. D. 17, 79 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ma, C.H., Wang, J. et al. Preparation of Er3+:Y3Al5O12/TiO2 composite film and influence of layer number and layer sequence on the visible-light photocatalytic activity. Russ. J. Phys. Chem. 88, 2435–2445 (2014). https://doi.org/10.1134/S0036024414130305

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414130305

Keywords

Navigation