Skip to main content
Log in

Contribution of vibronic interactions to the thermodynamics of the phase transition in H-bonded ferroelectrics: Proton-lattice coupling effects in crystals of the KDP family

  • Theory of Atomic Molecular Processes
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A model Hamiltonian for microscopic description of structural phase transitions in KDP type ferroelectrics was considered in terms of the vibronic theory of heteroligand systems (VTHS). The Hamiltonian contains three terms that describe the proton interactions, the potential energy of lattice oscillators, and the relationship between these subsystems. In the second order perturbation theory, the configuration energies of the Bethe cluster method retained the Ising form, with the pseudospin Hamiltonian parameters explicitly depending on the electronic structure characteristics and the vibronic constants of the AO4-containing structural units. The Ising version of the theory was used for obtaining the numerical estimations of the thermodynamic properties, in particular, the critical temperature T c as a function of all the parameters of the pseudospin Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Vaks, Introduction to Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  2. R. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974; Mir, Moscow, 1975).

    Google Scholar 

  3. M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ., Oxford, 1977).

    Google Scholar 

  4. B. A. Strukov, and A. P. Levanyuk, Basic Physics of Ferroelectricity in Crystals (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  5. R. Blinc and S. Svetina, Phys. Rev. 147, 430 (1966).

    Article  CAS  Google Scholar 

  6. B. Silvi, Z. Latajka, and H. Ratajczak, Ferroelectrics 150, 303 (1993).

    Article  Google Scholar 

  7. O. Zhang, N. Kioussis, S. G. Demos, and H. B. Radousky, J. Phys.: Condens. Matter 14, L89 (2002).

    CAS  Google Scholar 

  8. J. Lasave, J. Kohanoff, R. L. Migoni, and S. Koval, Physica B 404, 2736 (2009).

    Article  CAS  Google Scholar 

  9. A. A. Levin and S. P. Dolin, J. Phys. Chem. 100, 6258 (1996).

    Article  CAS  Google Scholar 

  10. S. P. Dolin, T. Yu. Mikhailova, M. V. Solin, et al., Int. J. Quantum Chem. 110, 77 (2010).

    Article  CAS  Google Scholar 

  11. A. A. Levin and S. P. Dolin, Russ. J. Coord. Chem. 24, 270 (1998).

    CAS  Google Scholar 

  12. S. P. Dolin, A. A. Levin, and T. Yu. Mikhailova, Phys. Solid State 51, 1515 (2009).

    Article  CAS  Google Scholar 

  13. S. P. Dolin, A. A. Levin, and T. Yu. Mikhailova, J. Mol. Struct. 972, 115 (2010).

    Article  CAS  Google Scholar 

  14. I. B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds. Introduction to the Theory, 2nd ed. (Wiley, New York, 2010).

    Book  Google Scholar 

  15. R. Blinc, Croatica Chem. Acta 55, 7 (1982).

    CAS  Google Scholar 

  16. R. Blinc and B. Zeks, J. Phys.: Solid State Phys. 15, 4661 (1982).

    CAS  Google Scholar 

  17. A. A. Levin and P. N. D’yachkov, Heteroligand Molecular Systems. Bonding, Shapes and Isomer Stabilities (Taylor & Francis, London, New York, 2002).

    Google Scholar 

  18. R. J. Nelmes, Z. Tun, and W. F. Kuhs, Ferroelectrics 71, 125 (1987).

    Article  CAS  Google Scholar 

  19. G. Reiher, J. Mayers, and J. Platzman, Phys. Rev. Lett. 89, 135505 (2002).

    Article  Google Scholar 

  20. A. Levstik, D. R. Tilley, and B. Zeks, J. Phys. C: Solid State Phys. 17, 3793 (1984).

    Article  CAS  Google Scholar 

  21. R. O. Piltz, M. I. McMahom, and R. J. Nelmes, Ferroelectrics 108, 271 (1990).

    Article  CAS  Google Scholar 

  22. R. O. Piltz, M. I. McMahom, and R. J. Nelmes, Ferroelectrics 108, 277 (1990).

    Article  Google Scholar 

  23. A. A. Levin, S. P. Dolin, and T. Yu. Mikhailova, Phys. Solid State 54, 987 (2012).

    Article  CAS  Google Scholar 

  24. S. P. Dolin, A. A. Levin, and T. Yu. Mikhailova, in Proceedings of the International Conference on Jahn-Teller Effect, Freiburg, 2010 (Springer, New York, 2011).

    Google Scholar 

  25. S. P. Dolin, A. A. Levin, and T. Yu. Mikhailova, Int. J. Quantum Chem. 112, 2976 (2012).

    Article  CAS  Google Scholar 

  26. A. A. Levin, S. P. Dolin, and T. Yu. Mikhailova, J. Phys.: Conf. Ser. 428, 012025 (2013).

    Google Scholar 

  27. V. A. Abalmasov, A. S. Yurkov, A. M. Pugachev, and N. V. Surovtsev, in Proceedings of the 19th All-Russia Conference on Ferroelectrics Physics, S3-01 (Moscow, 2011), p. 196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Dolin.

Additional information

Original Russian Text © S.P. Dolin, T.Yu. Mikhailova, N.N. Breslavskaya, 2014, published in Zhurnal Fizicheskoi Khimii, 2014, Vol. 88, No. 11, pp. 1686–1696.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolin, S.P., Mikhailova, T.Y. & Breslavskaya, N.N. Contribution of vibronic interactions to the thermodynamics of the phase transition in H-bonded ferroelectrics: Proton-lattice coupling effects in crystals of the KDP family. Russ. J. Phys. Chem. 88, 1872–1881 (2014). https://doi.org/10.1134/S0036024414110065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414110065

Keywords

Navigation