Skip to main content
Log in

Sodium Chromium Arsenate Phosphates: Preparation, Structure, and Thermal Properties

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Arsenate phosphates \({\text{N}}{{{\text{a}}}_{3}}{\text{C}}{{{\text{r}}}_{2}}{{({\text{As}}{{{\text{O}}}_{4}})}_{x}}{{({\text{P}}{{{\text{O}}}_{4}})}_{{3\,\, - \,\,x}}}\) (1.75 ≤ x ≤ 3.0) were prepared by coprecipitation. Their unit cell parameter was a linear function of composition: a (Å) = 0.0967x + 11.873. The Na3Cr2(AsO4)2PO4 crystal structure was refined by the Rietveld method; the coordinates of basal atoms and bond lengths were calculated. A garnet solid solution crystallizes at 600–650°C; transition to a high−temperature rhombohedral structure occurred at 994–1044°C. The thermal expansion of the low-temperature phase having a garnet structure was studied in the range from –130 to 200°C. The solid solution samples expanded isotropically and had small thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. N. F. A. Jamaludin, K. Muthusamy, N. N. Isa, et al., Mater. Today Proc. 48, 728 (2022). https://doi.org/10.1016/j.matpr.2021.02.210

    Article  CAS  Google Scholar 

  2. H. L. Muttashar, N. B. Ali, M. A. Mohd Ariffin, et al., Case Stud. Constr. Mater. 8, 87 (2018). https://doi.org/10.1016/j.cscm.2017.12.001

    Article  Google Scholar 

  3. H. Liu and M. Zhao, Bai. X. et al., eTransportation 16, 100234 (2023). https://doi.org/10.1016/j.etran.2023.100234

  4. Y. Luo, Q. Zhang, A. Shen, et al., Solid State Ionics 374, 115812 (2022). https://doi.org/10.1016/j.ssi.2021.115812

    Article  CAS  Google Scholar 

  5. Z. Guo, X. Li, Z. Wang, et al., Trans. Nonferrous Met. Soc. China 32, 3362 (2022). https://doi.org/10.1016/S1003-6326(22)66025-4

    Article  CAS  Google Scholar 

  6. B. Ramkumar, K. So-young, N. Chan-woo, et al., Electrochim. Acta 359, 136955 (2020). https://doi.org/10.1016/j.electacta.2020.136955

    Article  CAS  Google Scholar 

  7. Y. Yang, T. Liu, L. Bi, et al., J. Alloys Compd. 860, 158235 (2021). https://doi.org/10.1016/j.jallcom.2020.158235

    Article  CAS  Google Scholar 

  8. J. Cui, S. Yao, A. Guerfi, et al., Energy Storage Mater. 53, 899 (2022). https://doi.org/10.1016/j.ensm.2022.10.002

    Article  Google Scholar 

  9. D. Huang, S. Liang, D. Chen, et al., Chem. Eng. J. 426, 131332 (2021). https://doi.org/10.1016/j.cej.2021.131332

    Article  CAS  Google Scholar 

  10. N. K. Mishra, A. Kumar, and K. Kumar, J. Alloys Compd. 947, 169440 (2023). https://doi.org/10.1016/j.jallcom.2023.169440

    Article  CAS  Google Scholar 

  11. Z. Pang, T. Li, Q. Liu, et al., Optik 274, 170496 (2023). https://doi.org/10.1016/j.ijleo.2022.170496

    Article  CAS  Google Scholar 

  12. M. Tapia, A. Fernandez-Osorio, R. Casanova, et al., Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.02.087

  13. K. Kunchariyakun and P. Sukmak, Constr. Build. Mater. 262, 120122 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120122

    Article  CAS  Google Scholar 

  14. S. M. Naga, N. El-Mehalawy, M. Awaad, et al., Mater. Today Commun. 34, 105033 (2023). https://doi.org/10.1016/j.mtcomm.2022.105033

    Article  CAS  Google Scholar 

  15. F. Abdala, A. Adriani, H. Ajamani, et al., Encyclopedia of Geology (Elsevier, 2021).

    Google Scholar 

  16. Z. Li, S. Li, S. Xin, et al., J. Alloys Compd. 944, 169253 (2023). https://doi.org/10.1016/j.jallcom.2023.169253

    Article  CAS  Google Scholar 

  17. N. Hamao, Y. Yamaguchi, and K. Hamamoto, J. Alloys Compd. 865, 158223 (2021). https://doi.org/10.1016/j.jallcom.2020.158223

    Article  CAS  Google Scholar 

  18. F. Chen, M. Liu, R. Piao, et al., Opt. Mater. 136, 113439 (2023). https://doi.org/10.1016/j.optmat.2023.113439

    Article  CAS  Google Scholar 

  19. P. P. Lohe, D. V. Nandanwar, P. D. Belsare, et al., Opt. Mater. 129, 112469 (2022). https://doi.org/10.1016/j.optmat.2022.112469

    Article  CAS  Google Scholar 

  20. A. S. Tolkacheva, S. N. Shkerin, A. V. Nikonov, et al., Mater. Lett. 305, 130811 (2021). https://doi.org/10.1016/j.matlet.2021.130811

    Article  CAS  Google Scholar 

  21. Y. Tong, W. Zhang, R. Wei, et al., Ceram. Int. 47, 2600 (2021). https://doi.org/10.1016/j.ceramint.2020.09.106

    Article  CAS  Google Scholar 

  22. A. Krasnikov, A. Suchocki, V. Tsiumra, et al., J. Lumin. 235, 118065 (2021). https://doi.org/10.1016/j.jlumin.2021.118065

    Article  CAS  Google Scholar 

  23. H. Mei, L. Zhang, Z. Rao, et al., J. Alloys Compd. 926, 166960 (2022). https://doi.org/10.1016/j.jallcom.2022.166960

    Article  CAS  Google Scholar 

  24. G. Inkrataite, A. Pakalniskis, D. Vistorskaja, et al., Mater. Lett. 316, 131990 (2022). https://doi.org/10.1016/j.matlet.2022.131990

    Article  CAS  Google Scholar 

  25. K. Bartosiewicz, V. Babin, K. Kamada, et al., J. Lumin. 216, 116724 (2019). https://doi.org/10.1016/j.jlumin.2019.116724

    Article  CAS  Google Scholar 

  26. C. Gheorghe, S. Hau, G. Stanciu, et al., J. Alloys Compd. 922, 166178 (2022). https://doi.org/10.1016/j.jallcom.2022.166178

    Article  CAS  Google Scholar 

  27. F. d’Yvoire, M. Pintard-Screpel, and E. Bretey, Solid State Ionics 1819, 502 (1986). https://doi.org/10.1016/0167-2738(86)90167-0

    Article  Google Scholar 

  28. V. I. Pet’kov, E. A. Asabina, and I. A. Shchelokov, Inorg. Mater. 49, 502 (2013). https://doi.org/10.1134/S0020168513050117

    Article  CAS  Google Scholar 

  29. V. Pet’kov, E. Asabina, V. Loshkarev, et al., J. Nucl. Mater. 471, 122 (2016). https://doi.org/10.1016/j.jnucmat.2016.01.016

    Article  CAS  Google Scholar 

  30. H. Li, H. Z. Xu, Y. Y. Wang, et al., Solid State Phenom. 281, 450 (2018). https://doi.org/10.4028/www.scientific.net/SSP.281.450

  31. V. I. Pet’kov, A. A. Asabina, A. A. Lukuttsov, et al., Radiochemistry 57, 632 (2015). https://doi.org/10.1134/S1066362215060119

    Article  CAS  Google Scholar 

  32. M. A. Ryumin, V. V. Pukhkaya, and L. N. Komissarova, Russ. J. Inorg. Chem. 55, 1010 (2010). https://doi.org/10.1134/S0036023610070041

    Article  CAS  Google Scholar 

  33. M. V. Sukhanov, V. I. Pet’kov, V. S. Kurazhkovskaya, et al., Russ. J. Inorg. Chem. 51, 706 (2006). https://doi.org/10.1134/S0036023606050032

    Article  Google Scholar 

  34. H. M. Rietveld, Acta Crystallogr. 22, 151 (1967). https://doi.org/10.1107/S0365110X67000234

    Article  CAS  Google Scholar 

  35. K. Yong-Il and F. Izumi, J. Ceram. Soc. Jpn. 102, 401 (1994). https://doi.org/10.2109/JCERSJ.102.401

    Article  Google Scholar 

  36. E. A. Genkina, V. B. Kalinin, B. A. Maksimov, et al., Kristallografiya 36, 1126 (1991).

    CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 23-23-00044), https://rscf.ru/project/23-23-00044/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Pyaterikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyaterikov, E.A., Pet’kov, V.I., Fukina, D.G. et al. Sodium Chromium Arsenate Phosphates: Preparation, Structure, and Thermal Properties. Russ. J. Inorg. Chem. 68, 1371–1379 (2023). https://doi.org/10.1134/S0036023623601927

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601927

Keywords:

Navigation