Skip to main content
Log in

Synthesis, phase transitions, and thermal expansion in arsenate-phosphate solid solution with garnet structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The new polycrystalline phases of variable composition \({\mathrm{Na}}_{3}{\mathrm{Cr}}_{2}({\mathrm{AsO}}_{4}{)}_{\text{x}}({\mathrm{PO}}_{4}{)}_{3-\text{x}}\) were synthesized by co-precipitation of metal salts, arsenic acid, and ammonium hydrophosphate from an aqueous solution, followed by heat treatment. The obtained samples were examined using XRD, TG − DSC, SEM, and microprobe analysis. The \({\mathrm{Na}}_{3}{\mathrm{Cr}}_{2}({\mathrm{AsO}}_{4}{)}_{\text{x}}({\mathrm{PO}}_{4}{)}_{3-\text{x}}\) solid solution (1.75 ≤ x ≤ 3.0) exhibits dimorphism at elevated temperatures: low-temperature modification with garnet structure is obtained at 873–923 K and high-temperature rhombohedral modification at 1084–1317 K. The thermal expansion property of a low-temperature solid solution was studied in the temperature range of 143–473 K. The samples of solid solution expand isotropically. As the content of phosphorus in the solid solution increases, the coefficients of linear thermal expansion are raised.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sickafus KE, Melcher CL, Flynn-Hepford MI, et al. Crystal chemistry of rare-earth containing garnets: prospects for high configurational entropy. J Solid State Chem. 2022. https://doi.org/10.1016/j.jssc.2022.122997.

    Article  Google Scholar 

  2. Milam-Guerrero J, Neer AJ, Melot BC. Crystal chemistry and competing magnetic exchange interactions in oxide garnets and spinels. J Solid State Chem. 2019;274:1–9.

    Article  CAS  Google Scholar 

  3. Xing G, Zhu H, Zhuang A, et al. Doped superior garnet electrolyte toward all-solid-state Li metal batteries. Phys Open. 2022. https://doi.org/10.1016/j.jssc.2019.02.007.

    Article  Google Scholar 

  4. Kuganathan N, Chroneos A. Atomic-scale studies of garnet-type Mg3Fe2Si3O12: defect chemistry, diffusion and dopant properties. J Power Sources Adv. 2020. https://doi.org/10.1016/j.powera.2020.100016.

    Article  Google Scholar 

  5. Yamazaki Y, Miyake S, Akimoto K, et al. Effect of Ga2O3 addition on the properties of garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte. Batteries. 2022. https://doi.org/10.3390/batteries8100158.

    Article  Google Scholar 

  6. Sun Q, Chen X, Xie J, et al. Nano-structured Li1.3Al0.3Ti1.7(PO4)3 coated LiCoO2 enabling compatible interface with ultrathin garnet-based solid electrolyte for stable Li metal battery. Mater Today Nano. 2022. https://doi.org/10.1007/s00339-023-06796-7.

    Article  Google Scholar 

  7. Yang X, Adair KR, Gao X, et al. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ Sci. 2021. https://doi.org/10.1039/D0EE02714F.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Han Y, Wang S, Liu H, et al. A novel Al3+ modified Li6CaLa2Sb2O12:Mn4+ far-red-emitting phosphor with garnet structure for plant cultivation. J Lumin. 2020;221:117031.

    Article  CAS  Google Scholar 

  9. Huang D, Liang S, Chen D, et al. An efficient garnet-structured Na3Al2Li3F12:Cr3+ phosphor with excellent photoluminescence thermal stability for near-infrared LEDs. Chem Eng J. 2021. https://doi.org/10.1016/j.cej.2021.131332.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kumar Mishra N, Upadhyay MM, Kumar S, et al. Efficient dual mode emission in Ce3+/Yb3+/Er3+ doped yttrium aluminium gallium garnet for led device and optical thermometry. Spectrochim Acta A Mol Biomol Spectrosc. 2022. https://doi.org/10.1016/j.saa.2022.121664.

    Article  PubMed  Google Scholar 

  11. Jamaludin NFA, Muthusamy K, Isa NN, et al. Use of spent garnet in industry: a review. Mater Today Proc. 2022. https://doi.org/10.1016/j.matpr.2021.02.210.

    Article  Google Scholar 

  12. Muttashar HL, Ali NB, Mohd Ariffin MA, et al. Microstructures and physical properties of waste garnets as a promising construction materials. Case Stud Constr Mater. 2018. https://doi.org/10.1016/j.cscm.2017.12.001.

    Article  Google Scholar 

  13. Stefanovsky SV, Yudintsev SV, Vinokurov SE, et al. Chemical-technological and mineralogical-geochemical aspects of the radioactive waste management. Geochem Int. 2016. https://doi.org/10.1134/S001670291613019X.

    Article  Google Scholar 

  14. Alderton D. Garnets. In: Elias S, Alderton D editors. Elsevier. London 2021; 350–357.

  15. Schwarz H, Schmidt L. Neue Verbindungen mit Granatstruktur. IV. Arsenate des Typs {Na3}[M2III](As3)O12. Z Anorg Allg Chem. 1972; 387: 31–42.

  16. Winand J-M, Rulmont A, Tarte P. Synthese et etude de nouveaux arseniates (MI)3(NIII)2(AsO4)3 et de solutions solides (MI)3(NIII)2(AsO4)x(PO4)3–x (M = Li, Na; N = Fe, Sc, In, Cr). J Solid State Chem. 1990. https://doi.org/10.1016/0022-4596(90)90068-9.

    Article  Google Scholar 

  17. Kouass S, Bouzemi B, Boughzala H. Garnet-type Li2.44K0.56Cr2(AsO4)3. Acta Crystallogr., Sect. E: Struct. Rep. Online. 2006; doi:https://doi.org/10.1107/S1600536806004788.

  18. Khorari S, Rulmont A, Tarte P. Influence of cationic substitutions in Na3Fe2(AsO4)3: transition from the garnet to the alluaudite structure. J Solid State Chem. 1998. https://doi.org/10.1006/jssc.1997.7727.

    Article  Google Scholar 

  19. Khorari S, Rulmont A, Tarte P. The arsenates NaCa2M2+2(AsO4)3 (M2+=Mg, Ni, Co): influence of cationic substitutions on the garnet-alluaudite polymorphism. J Solid State Chem. 1997. https://doi.org/10.1006/jssc.1997.7379.

    Article  Google Scholar 

  20. Drebushchak VA. Thermal expansion of solids: review on theories. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09370-y.

    Article  Google Scholar 

  21. Anantharamulu N, Koteswara RK, Rambabu G, et al. A wide-ranging review on Nasicon type materials. J Mater Sci. 2011. https://doi.org/10.1007/s10853-011-5302-5.

    Article  Google Scholar 

  22. Pet’kov VI. Complex phosphates formed by metal cations in oxidation states I and IV. Russ Chem Rev. 2012. https://doi.org/10.1070/RC2012v081n07ABEH004243.

    Article  Google Scholar 

  23. Li H, Xu HZ, Wang YY, Zhou CL, et al. Preparation and properties of NZP family ceramics. Solid State Phenom. 2018. https://doi.org/10.4028/www.scientific.net/SSP.281.450.

    Article  Google Scholar 

  24. Avdeev M. Crystal chemistry of NaSICONs: ideal framework, distortion, and connection to properties. Chem Mater. 2021. https://doi.org/10.1021/acs.chemmater.1c02695.

    Article  Google Scholar 

  25. Singh B, Wang Z, Park S, et al. Chemical map of NaSiCON electrode materials for sodium-ion batteries. J Mater Chem. 2021. https://doi.org/10.26434/chemrxiv.13135811.

    Article  Google Scholar 

  26. Yang Z, Tang B, Xie Z. NASICON-Type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries. ChemElectroChem. 2021. https://doi.org/10.1002/celc.202001527.

    Article  Google Scholar 

  27. Stenina IA, Yaroslavtsev AB. Nanomaterials for lithium-ion batteries and hydrogen energy. Pure Appl Chem. 2017. https://doi.org/10.1515/pac-2016-1204.

    Article  Google Scholar 

  28. Hou M, Liang F, Chen K, et al. Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology. 2020. https://doi.org/10.1088/1361-6528/ab5be7.

    Article  PubMed  Google Scholar 

  29. Jian Z, Hu Y-S, Ji X, Chen W. NASICON-structured materials for energy storage. Adv Mater. 2017. https://doi.org/10.1002/adma.201601925.

    Article  PubMed  Google Scholar 

  30. Ananthanarayanan A, Ambashta RD, Sudarsan V, et al. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste. J Nucl Mater. 2017. https://doi.org/10.1016/j.jnucmat.2017.01.054.

    Article  Google Scholar 

  31. Wang Y, Zhou Y, Tong N, et al. Crystal structure, mechanical and thermophysical properties of Ca0.5Sr0.5Zr4−xSnxP6O24 ceramics. J Alloys Compd. 2019. https://doi.org/10.1016/j.jallcom.2018.12.379.

    Article  Google Scholar 

  32. Pet’kov VI, Sukhanov MV, Ermilova MM, et al. Development and synthesis of bulk and membrane catalysts based on framework phosphates and molybdates. Russ J Appl Chem. 2010. https://doi.org/10.1134/S1070427210100022.

    Article  Google Scholar 

  33. Yamamoto K, Abe Y. Enhanced catalytic activity of microporous glass-ceramics with a skeleton of NASICON-type copper(I) titanium phosphate crystal. Mater Res Bull. 2000. https://doi.org/10.1016/S0025-5408(00)00206-3.

    Article  Google Scholar 

  34. Zhukova AI, Asabina EA, Kharlanov AN, et al. Novel complex titanium NASICON-type phosphates as acidic catalysts for ethanol dehydration. Catalysts. 2023. https://doi.org/10.3390/catal13010185.

    Article  Google Scholar 

  35. Pet’kov VI, Lavrenov DA, Kovalsky AM. Synthesis, characterization and thermal expansion of the zinc-containing phosphates with the mineral-like framework structures. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08624-8.

    Article  Google Scholar 

  36. Daneshwaran B, Triveni RM, Sathasivam PK. Influence of tin substitution on negative thermal expansion of K2Zr2-xSnxP2SiO12 (x = 0–2) phosphosilicates ceramics. Ceram Int. 2020. https://doi.org/10.1016/j.ceramint.2020.02.181.

    Article  Google Scholar 

  37. Liu Y, Molokeev MS, Liu Q, Xia Z. Crystal structure, phase transitions and thermal expansion properties NaZr2(PO4)3 - SrZr4(PO4)6 solid solutions. Inorg Chem Front. 2018. https://doi.org/10.1039/C7QI00782E.

    Article  Google Scholar 

  38. Bohre A, Avasthi K, Pet’kov VI. Vitreous and crystalline phosphate high level waste matrices: Present status and future challenges. J Ind Eng Chem. 2017. https://doi.org/10.1016/j.jiec.2017.01.032.

    Article  Google Scholar 

  39. Pet’kov VI, Asabina EA, Lukuttsov AA, et al. Immobilization of cesium into mineral-like matrices of tridymite, kosnarite, and langbeinite structure. Radiochemistry. 2015. https://doi.org/10.1134/S1066362215060119.

    Article  Google Scholar 

  40. Pet’kov VI, Asabina EA, Loshkarev V, Sukhanov M. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization. J Nucl Mater. 2016. https://doi.org/10.1016/j.jnucmat.2016.01.016.

    Article  Google Scholar 

  41. Wang J, Wei Y, Wang J, et al. Simultaneous immobilization of radionuclides Sr and Cs by sodium zirconium phosphate type ceramics and its chemical durability. Ceram Int. 2022. https://doi.org/10.1016/j.ceramint.2022.01.147.

    Article  Google Scholar 

  42. Kim Y-I, Izumi F. Structure refinements with a new version of the Rietveld-refinement program RIETAN. J Ceram Soc Jpn. 1994. https://doi.org/10.2109/JCERSJ.102.401.

    Article  Google Scholar 

  43. Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967. https://doi.org/10.1107/s0365110x67000234.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation grant № 23-23-00044, https://rscf.ru/project/23-23-00044/.

Funding

This study was funded by the Russian Science Foundation, 23-23-00044, Vladimir I Pet*kov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Pet’kov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Piaterikov, E.A. & Fukina, D.G. Synthesis, phase transitions, and thermal expansion in arsenate-phosphate solid solution with garnet structure. J Therm Anal Calorim 148, 11569–11576 (2023). https://doi.org/10.1007/s10973-023-12514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12514-5

Keywords

Navigation