Skip to main content
Log in

Exchange interaction and spin dynamics in pentanuclear clusters, Cu3Ln2(ClCH2COO)12(H2O)8 (Ln = Nd3+, Sm3+, Pr3+)

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

New compounds, [Cu3Ln2(ClCH2COO)12(H2O)8]·2H2O with Ln = Nd3+ (I), Sm3+ (II), Pr3+ (III), built up of pentanuclear clusters were synthesized and studied by means of X-ray analysis and electron paramagnetic resonance (EPR). X-ray data show that all compounds are isostructural and the pentanuclear clusteres may be considered as a linear system with alternating Cu(II) and Ln(III) ions: Cu(2)-L1-Ln-L2-Cu(1)-L2-Ln-L2-Cu(2) with L1 and L2 being bridging fragments and Cu(1) and Cu(2) being structurally nonequivalent copper complexes. EPR studies demonstrate that in the temperature range of 100–293 K the signals due to only one type of the copper complexes are observed in the spectra of I–III. AtT<100 K the spectral temperature dependence is nontrivial. AtT<30 K new signals are detected in the spectra of I and II. The temperature dependence of the EPR spectra is interpreted under the assumption that the parameter of the exchange interaction Cu(2)-Ln considerably exceeds the parameter of the interaction Cu(1)-Ln. EPR spectra are calculated for the fragments of five paramagnetic centers in the frames of the model taking into account the nonequivalence of two copper complexes, short longitudinal and transverse paramagnetic relaxation times of the rare-earth ions at room temperature and the change of the relaxation rates when the temperature decreases. The results of the calculations show that it is possible to obtain information about the interactions in the system on the basis of the analysis of the temperature dependence of the EPR spectra of the central copper complex. The parameter of the isotropic part of the exchange interaction between copper and neodymium ions (for the interaction Cu(2)-Nd) is estimated as about 15 cm−1. A considerable rearrangement of the spin states when the temperature changes is found for all complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kahn O.: Molecular Magnetism, p. 380. New York: VCH Publishers 1993; Kahn O. (ed.): Magnetism: A Supramolecular Function (NATO ASI Series, series C, vol. 484). Dordrecht: Kluwer Academic Publishers 1996; Kahn O.: Adv. Inorg. Chem.4. 179–358 (1996); Kahn O.: Struct. Bonding68, 89–167 (1987)

    Google Scholar 

  2. Benelli C., Gatteschi D.: Chem. Rev.102, 2369 (2002); Gatteschi D., Kahn O., Miller J.S., Palacio F. (eds.): Magnetic Molecular Materials (NATO ASI Series, series E, vol. 198). Dordrecht: Kluwer 1991; Miller J.S., Epstein A.J.: Chem. Eng. News1995, 30–42.

    Article  Google Scholar 

  3. Sakamoto M., Manseki K., Okawa H.: Coord. Chem. Rev.219–221, 379–414 (2001); Okawa H., Furutachi H., Fenton D.E.: Coord. Chem. Rev.174, 51–75 (1998)

    Article  Google Scholar 

  4. Avecilla F., Platas-Iglesias C., Rodrigues-Cortinas R., Guillemot G., Bunzli J.-C.G., Brondino C.D., Geraldes C.F.G. de-Blas A., Rodriguez-Blas T.: J. Chem. Soc. Dalton Trans.2002, 4659–4665; Piguet C., Edder C., Rigaut S., Bernardinelli G., Bunzli J.-C.G., Hopfgarther G.: J. Chem. Soc. Dalton Trans.2000, 3999–4006.

  5. Likodimos V., Guskos N., Gamari-Seale H., Koufoudakis A., Wabia M., Typek J., Fuks H.: Phys. Rev. B54, 12342–12352 (1996); Rudra I., Raghu C., Ramasesha S.: Phys. Rev. B65, 224–411 (2002)

    Article  ADS  Google Scholar 

  6. XEMP ver. 4.2. Siemens Analytical X-ray Inst. Inc. 1990.

  7. Otwinowski Z., Minor W. in: Methods in Enzymology (Carter C.W., Sweet R.M., eds.), vol. 276, p. 307. London: Academic Press 1996.

    Google Scholar 

  8. Sheldrick G.M.: SHELXL 97. Program for the Refinement of Crystal Structures University of Gottingen, Germany, 1997.

    Google Scholar 

  9. Brown G.M., Chidambaran R.: Acta Crystallogr. B29, 2393 (1973)

    Article  Google Scholar 

  10. Voronkova V.K., Huskowska E., Legendziewicz J., Yablokov Yu.V.: Fiz. Tverd. Tela St. Peterburg39, 2057–2061 (1997)

    Google Scholar 

  11. Salikhov K.M., Galeev R.T., Voronkova V.K., Yablokov Yu.V., Legendziewicz J.: Appl. Magn. Reson.14, 457–472 (1998)

    Article  Google Scholar 

  12. Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transitions Ions. Oxford: Clarendon Press 1970.

    Google Scholar 

  13. Molin Yu.N., Salikhov K.M., Zamaraev K.I.: Spinovyi Obmen. Novosibirsk: Nauka 1977.

    Google Scholar 

  14. Bencini A., Gatteschi D.: Electron Paramagnetic Resonance of Exchange Coupled Systems. Berlin: Springer 1990.

    Google Scholar 

  15. Yablokov Yu.V., Voronkova V.K., Mosina L.V.: Paramagnitnyi Rezonans Obmennykh Klasterov. Moscow: Nauka 1988.

    Google Scholar 

  16. Voronkova V.K., Yablokov Yu.V., Legendziewicz J., Borzechowska M.: Fiz. Tverd. Tela St. Peterburg41, 2154–2157 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronkova, V.K., Galeev, R.T., Shova, S. et al. Exchange interaction and spin dynamics in pentanuclear clusters, Cu3Ln2(ClCH2COO)12(H2O)8 (Ln = Nd3+, Sm3+, Pr3+). Appl. Magn. Reson. 25, 227–247 (2003). https://doi.org/10.1007/BF03166687

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166687

Keywords

Navigation