Skip to main content
Log in

Isomeric Molecular Forms of Pseudo-Binuclear Bismuth(III) Dithiocarbamate [Bi2{S2CN(CH2)6}6]: Preparation, Thermal Behavior, and Structural Effect of Its Solvation with DMSO, [Bi2{S2CN(CH2)6}6]⋅2(CH3)2SO

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bismuth(III) hexamethylenedithiocarbamate (HmDtc) [Bi2{S2CN(CH2)6}6] (I) and its solvated with dimethyl sulfoxide form [Bi2(S2CNHm)6]⋅2(CH3)2SO (II) have been obtained. The crystal structure of compound I shows an unusual alternation of two unsymmetrical isomeric pseudo-binuclear [Bi1/1B(HmDtc)3···Bi1A/1C(HmDtc)3] molecules, each of which involves two non-equivalent mononuclear moieties combined by secondary Bi···S bonds. The solvation of complex I leads to the structural unification of isomeric [Bi(HmDtc)3] molecules followed by their self-organization into centrosymmetric pseudo-dimers in the structure of compound II. All HmDtc ligands coordinate in S,S'-anisobidentate mode to form four isomeric (in I) or structurally unique [Bi(HmDtc)3] molecules (in II), whose distorted polyhedra can be approximated by pentagonal pyramid or octahedron. Solvating DMSO molecules are retained in the structure II by C–H···O hydrogen bonds. The analysis of energy dispersive X-ray spectra allowed one to identify the residual matter obtained by thermolysis of the complexes as Bi2S3 with admixture of Bi0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Position of absorption bands of N–CH2 groups was revealed by comparative analysis of IR spectra of complexes I and II and hexamethylenimine C6H12NH [27] and cycloheptane C7H14 [28].

  2. To register IR spectrum of DMSO (νas(CH3) 2997, νs(CH3) 2913, ν(S=O) 1047, νas(C–S) 702, νs(C–S) 670 cm–1), we used thin film method [30].

  3. The concept of secondary bonds was proposed to characterize interactions between atoms located at distances comparable with the sum of their Van der Waals radii [34].

  4. The values of Van der Waals radius for bismuth atom given in certain literature sources—2.3 [35], 2.07 [36], 2.38 [37], and 2.54 Å [38]—differ considerably.

REFERENCES

  1. S. Sivasekar, K. Ramalingam, C. Rizzoli, and N. Alexander, Inorg. Chim. Acta 419, 82 (2014). https://doi.org/10.1016/j.ica.2014.04.042

    Article  CAS  Google Scholar 

  2. R. Chauhan, J. Chaturvedi, M. Trivedi, et al., Inorg. Chim. Acta 430, 168 (2015). https://doi.org/10.1016/j.ica.2015.03.007

    Article  CAS  Google Scholar 

  3. W. N. Kun, S. Mlowe, L. D. Nyamen, et al., Polyhedron 154, 173 (2018). https://doi.org/10.1016/j.poly.2018.07.055

    Article  CAS  Google Scholar 

  4. S. Tamilvanan, G. Gurumoorthy, S. Thirumaran, and S. Ciattini, Polyhedron 121, 70 (2017). https://doi.org/10.1016/j.poly.2016.09.038

    Article  CAS  Google Scholar 

  5. S. Tamilvanan, G. Gurumoorthy, S. Thirumaran, and S. Ciattini, Polyhedron 123, 111 (2017). https://doi.org/10.1016/j.poly.2016.10.026

    Article  CAS  Google Scholar 

  6. N. H. Abdullah, Z. Zainal, S. Silong, et al., Thermochim. Acta 632, 37 (2016). https://doi.org/10.1016/j.tca.2016.03.001

    Article  CAS  Google Scholar 

  7. H. Li, C. S. Lai, J. Wu, et al., J. Inorg. Biochem. 101, 809 (2007). https://doi.org/10.1016/j.jinorgbio.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  8. D. H. A. Ishak, K. K. Ooi, K.-P. Ang, et al., J. Inorg. Biochem. 130, 38 (2014). https://doi.org/10.1016/j.jinorgbio.2013.09.018

    Article  CAS  PubMed  Google Scholar 

  9. R.-Z. Sun, Y.-C. Guo, W.-M. Liu, et al., Chin. J. Struct. Chem. 31, 655 (2012).

    CAS  Google Scholar 

  10. I. P. Ferreira, G. M. de Lima, E. B. Paniago, et al., J. Coord. Chem. 67, 1097 (2014). https://doi.org/10.1080/00958972.2014.908188

    Article  CAS  Google Scholar 

  11. I. I. Ozturk, C. N. Banti, N. Kourkoumelis, et al., Polyhedron 67, 89 (2014). https://doi.org/10.1016/j.poly.2013.08.052

    Article  CAS  Google Scholar 

  12. J. O. Adeyemi and D. C. Onwudiwe, Molecules 25, 305 (2020). https://doi.org/10.3390/molecules25020305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P. F. Chan, K. P. Ang, and R. A. Hamid, Biometals 34, 365 (2021). https://doi.org/10.1007/s10534-021-00286-0

    Article  CAS  PubMed  Google Scholar 

  14. C. S. Lai and E. R. T. Tiekink, Z. Kristallogr. 222, 532 (2007). https://doi.org/10.1524/zkri.2007.222.10.532

    Article  CAS  Google Scholar 

  15. H. D. Yin, F. Li, and D. Wang, J. Coord. Chem. 60, 1133 (2007). https://doi.org/10.1080/00958970601008846

    Article  CAS  Google Scholar 

  16. I. Baba, K. Karimah, Y. Farina, et al., Acta Crystallogr., Sect. E 58, m756 (2002). https://doi.org/10.1107/S1600536802021256

    Article  CAS  Google Scholar 

  17. L. P. Battaglia and A. B. Corradi, J. Chem. Soc., Dalton Trans. 8, 1513 (1986). https://doi.org/10.1039/DT9860001513

    Article  Google Scholar 

  18. A. V. Ivanov, I. V. Egorova, M. A. Ivanov, et al., Dokl. Phys. Chem. 454, 16 (2014). https://doi.org/10.1134/S0012501614010059

    Article  CAS  Google Scholar 

  19. V. Gowda, B. Sarma, R. S. Laitinen, et al., Polyhedron 129, 123 (2017). https://doi.org/10.1002/slct.202001692

    Article  CAS  Google Scholar 

  20. E. V. Novikova, A. S. Zaeva, G. L. Denisov, et al., Russ. J. Inorg. Chem. 67, 91 (2022). https://doi.org/10.1134/S0036023622010077

    Article  CAS  Google Scholar 

  21. V. M. Byr’ko, Dithiocarbamates (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  22. G. M. Sheldrick, Acta Crystallogr., Sect. A 71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  23. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  24. L. A. Kazitsyna and N. B. Kupletskaya, Application of UV, IR, NMR and Mass Spectroscopy in Organic Chemistry (Izd-vo Mosk. Univ., Moscow, 1979) [in Russian].

    Google Scholar 

  25. E. V. Korneeva, A. V. Ivanov, A. V. Gerasimenko, et al., Russ. J. Gen. Chem. 89, 1642 (2019). https://doi.org/10.1134/S1070363219080152

    Article  CAS  Google Scholar 

  26. E. V. Korneeva, E. V. Novikova, O. V. Loseva, et al., Russ. J. Coord. Chem. 47, 769 (2021). https://doi.org/10.1134/S1070328421090050

    Article  CAS  Google Scholar 

  27. SpectraBase Compound ID=5Zceg8XzL6u John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/5Zceg8XzL6u (February 9, 2023).

  28. SpectraBase Compound ID=DiJQuAXLpJE John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/DiJQuAXLpJE (February 9, 2023).

  29. F. A. Cotton, R. Francis, and W. D. Horrocks, J. Phys. Chem. 64, 1534 (1960). https://doi.org/10.1021/j100839a046

    Article  CAS  Google Scholar 

  30. B. N. Tarasevich, Fundamentals of IR spectroscopy with Fourier Transform. Sample Preparation in IR Spectroscopy (MGU, Moscow, 2012) [in Russian].

    Google Scholar 

  31. Yu. N. Kukushkin, Chemistry of Coordination Compounds (Vyssh. Shkola, Moscow, 1985) [in Russian].

    Google Scholar 

  32. D. F. Bocian, H. M. Pickett, T. C. Rounds, and H. L. Strauss, J. Am. Chem. Soc. 97, 687 (1975). https://doi.org/10.1021/ja00837a001

    Article  CAS  Google Scholar 

  33. I. K. Boessenkool and J. C. A. Boeyens, J. Cryst. Mol. Struct. 10, 11 (1980). https://doi.org/10.1007/BF01209549

    Article  CAS  Google Scholar 

  34. N. W. Alcock, Adv. Inorg. Chem. Radiochem. 15, 1 (1972). https://doi.org/10.1016/S0065-2792(08)60016-3

    Article  CAS  Google Scholar 

  35. S. S. Batsanov, Inorg. Mater. 37, 871 (2001). https://doi.org/10.1023/A:1011625728803

    Article  CAS  Google Scholar 

  36. M. Mantina, A. C. Chamberlin, R. Valero, et al., J. Phys. Chem. A 113, 5806 (2009). https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S.-Z. Hu, Z.-H. Zhou, and B. E. Robertson, Z. Kristallogr. 224, 375 (2009). https://doi.org/10.1524/zkri.2009.1158

    Article  CAS  Google Scholar 

  38. S. Alvarez, Dalton Trans. 42, 8617 (2013). https://doi.org/10.1039/C3DT50599E

    Article  CAS  PubMed  Google Scholar 

  39. A. Bondi, J. Phys. Chem. 68, 441 (1964). https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  40. J.-C. Lin, R. C. Sharma, and Y. A. Chang, J. Phase Equilib. 17, 132 (1996). https://doi.org/10.1007/BF02665790

    Article  CAS  Google Scholar 

  41. Z.-H. Ge, P. Qin, D. He, et al., ACS Appl. Mater. Interfaces 9, 4828 (2017). https://doi.org/10.1021/acsami.6b14803

    Article  CAS  PubMed  Google Scholar 

  42. H. Zeynali, S. B. Mousavi, and S. M. Hosseinpour-Mashkani, Mater. Lett. 144, 65 (2015). https://doi.org/10.1016/j.matlet.2015.01.023

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray diffraction study was performed using equipment of the Center for Molecular Structure Studies of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, under support of the Ministry of Science and Higher Education of the Russian Federation (State Assignment no. 075-03-2023-642). Electron microscopy and EDX spectral experiments were performed in the User Facilities Center, Amur Center for Mineral and Geochemical Studies (Laboratory of Microscopy and Molecular Structure Studies), Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, E.V., Egorova, I.V., Isakovskaya, K.L. et al. Isomeric Molecular Forms of Pseudo-Binuclear Bismuth(III) Dithiocarbamate [Bi2{S2CN(CH2)6}6]: Preparation, Thermal Behavior, and Structural Effect of Its Solvation with DMSO, [Bi2{S2CN(CH2)6}6]⋅2(CH3)2SO. Russ. J. Inorg. Chem. 68, 1425–1438 (2023). https://doi.org/10.1134/S0036023623601381

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601381

Keywords:

Navigation