Skip to main content
Log in

6Ag2Se + Ag8GeTe6 ↔ 6Ag2Te + Ag8GeSe6 Reciprocal System

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Here, we present the results of DTA and XRD studies of phase equilibria in the 6Ag2Se + Ag8GeTe6 ↔ 6Ag2Te + Ag8GeSe6 reciprocal system (system A). A Т–х diagram of the Ag8GeSe6–Ag8GeTe6 boundary system, several inner polythermal sections, isothermal sections at 300 and 1000 K, and the liquidus surface projection were plotted. The Ag8GeSe6–Ag8GeTe6 system is a partially quasi-binary system; it features continuous substitutional solid solutions between Ag8GeTe6 and the high-temperature cubic Ag8GeSe6 phase (the δ phase). Once solid solutions are formed, the polymorphic transition temperature in Ag8GeSe6 decreases, thereby stabilizing the ion-conducting cubic phase in the range of ≥40 mol % Ag8GeTe6 compositions at room temperature and below it. System A is shown to be a reversible reciprocal system; its liquidus surface is comprised of three fields, which relate to the primary crystallization of the solid solutions between the high-temperature Ag2Se and Ag2Te (α phase) phases, IT-Ag2Te-base solid solutions (β phase), and the δ phase. The subsolidus portion of system A features complex interactions related to polymorphism in the terminal compounds and in phases based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Applications of Chalcogenides: S, Se, and Te, Ed. by G. K. Ahluwalia (Springer, 2016).

    Google Scholar 

  2. Chalcogenides: Advances in Research and Applications, Ed. by P. Woodrow Nova (2018).

    Google Scholar 

  3. Chalcogenide. From 3D to 2D and Beyond, Ed. by X. Liu, et al. (Elsevier, 2019).

  4. R. Scheer and H.-W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (Wiley-VCH, 2011).

    Book  Google Scholar 

  5. N. Alonso-Vante, Chalcogenide Materials for Energy Conversion: Pathways to Oxygen and Hydrogen Reactions (Springer, 2018).

    Book  Google Scholar 

  6. M. B. Babanly, Yu. A. Yusibov, and V. T. Abishev, Ternary Chalcogenides Based on Copper and Silver (Izd-vo BGU, Baku, 1993) [in Russian].

    Google Scholar 

  7. L. M. Nieves, K. Mossburg, J. C. Hsu, et al., Nanoscale 13, 19306 (2021). https://doi.org/10.1039/D0NR03872E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. I. Nasonova, A. V. Sobolev, I. A. Presniakov, et al., J. Alloys Compd. 778, 774 (2019). https://doi.org/10.1016/j.jallcom.2018.11.168

    Article  CAS  Google Scholar 

  9. T. Amrillah, A. Prasetio, A. R. Supandi, et al., Mater. Horiz. 10, 313 (2023). https://doi.org/10.1039/D2MH00983H

    Article  CAS  PubMed  Google Scholar 

  10. S. Akhil and R. G. Balakrishna, ACS Sustainable Chem. Eng. 10, 13176 (2022). https://doi.org/10.1021/acssuschemeng.2c04333

    Article  CAS  Google Scholar 

  11. S. Y. Tee, D. Ponsford, C. L. Lay, et al., Adv. Sci. 9, 1002 (2022).

    Article  Google Scholar 

  12. H. Fu, J. Mater. Chem. C 6, 414 (2018). https://doi.org/10.1039/C7TC04952H

    Article  CAS  Google Scholar 

  13. S. Lin, W. Li, and Y. Pei, Mater. Today 48, 198 (2021). https://doi.org/10.1016/j.mattod.2021.01.007

    Article  CAS  Google Scholar 

  14. M. Fujikane, K. Kurosaki, H. Muta, et al., J. Alloys Compd. 396, 280 (2005). https://doi.org/10.1016/j.jallcom.2004.12.038

    Article  CAS  Google Scholar 

  15. Q. Jiang, S. Li, Y. Luo, et al., ACS Appl. Mater. Interfaces 12, 54653 (2020). https://doi.org/10.1021/acsami.0c15877

    Article  CAS  PubMed  Google Scholar 

  16. Y. Fan, G. Wang, R. Wang, et al., J. Alloys Compd. 822, 153665 (2020). https://doi.org/10.1016/j.jallcom.2020.153665

    Article  CAS  Google Scholar 

  17. H. Semkiv, N. Ilchuk, and A. Kashuba, Low Temp. Phys. 48, 12 (2022). https://doi.org/10.1063/10.0008957

    Article  CAS  Google Scholar 

  18. L.-Y. Yeh and K.-W. Cheng, Catalisys 11, 363 (2021). https://doi.org/10.3390/catal11030363

    Article  CAS  Google Scholar 

  19. C. Yang, Y. Xia, L. Xu, et al., J. Chem. Eng. 426, 131752 (2021). https://doi.org/10.1016/j.cej.2021.131752

    Article  CAS  Google Scholar 

  20. Y. Tong, W. Huang, X. Tan, et al., ACS Appl. Mater. Interfaces 14, 55780 (2022). https://doi.org/10.1021/acsami.2c17532

    Article  CAS  PubMed  Google Scholar 

  21. A. K. Ivanov-Shchits and I. V. Murin, Solid State Ionics, vol. 1 (Izd-vo St.-Petersb. Univ., St. Petersburg, 2000).

    Google Scholar 

  22. L. Li, Y. Liu, J. Dai, et al., J. Mater. Chem. C 4, 5806 (2016). https://doi.org/10.1039/C6TC00810K

    Article  CAS  Google Scholar 

  23. R. M. Sardarly, G. M. Ashirov, L. F. Mashadiyeva, et al., Mod. Phys. Lett. B 36, 2250171 (2023). https://doi.org/10.1142/S0217984922501718

    Article  Google Scholar 

  24. I. P. Studenyak, A. I. Pogodin, V. I. Studenyak, et al., Solid State Ionics 345, 115183 (2020). https://doi.org/10.1016/j.ssi.2019.115183

    Article  CAS  Google Scholar 

  25. Y. Lin, S. Fang, D. Su, et al., Nat. Commun. 6, 1 (2015). https://doi.org/10.1038/ncomms7824

    Article  CAS  Google Scholar 

  26. B. K. Heep, K. S. Weldert, Y. Krysiak, et al., Chem. Mater. 29, 4833 (2017). https://doi.org/10.1021/acs.chemmater.7b00767

    Article  CAS  Google Scholar 

  27. D. R. F. West, Ternary Phase Diagrams in Materials Science (CRC Press, 2019).

    Google Scholar 

  28. H. Saka, Introduction To Phase Diagrams In Materials Science And Engineering (World Scientific Publishing Company, 2020).

    Google Scholar 

  29. M. B. Babanly, L. F. Mashadiyeva, D. M. Babanly, et al., Russ. J. Inorg. Chem. 64, 1134 (2019). https://doi.org/10.1134/S0036023619130035

    Article  Google Scholar 

  30. S. Z. Imamaliyeva, D. M. Babanly, D. B. Tagiev, et al., Russ. J. Inorg. Chem. 63, 1704 (2018). https://doi.org/10.1134/S0036023618130041

    Article  CAS  Google Scholar 

  31. L. F. Mashadieva, Z. M. Alieva, R. Dzh. Mirzoeva, et al., Russ. J. Inorg. Chem. 67, 606 (2022). https://doi.org/10.1134/S0036023622050126

    Article  Google Scholar 

  32. Yu. A. Yusibov, I. Dzh. Alverdiev, L. F. Mashadieva, et al., Russ. J. Inorg. Chem. 63, 1622 (2018). https://doi.org/10.1134/S0036023618120227

    Article  CAS  Google Scholar 

  33. I. J. Alverdiev, S.M. Bageri, Z. M. Alieva, et al., Inorg. Mater. 53, 786 (2017). https://doi.org/10.1134/S0020168517080027

    Article  CAS  Google Scholar 

  34. I. J. Alverdiyev, Z. S. Aliev, S. M. Bagheri, et al., J. Alloys Compd. 691, 255 (2017). https://doi.org/10.1016/j.jallcom.2016.08.251

    Article  CAS  Google Scholar 

  35. Z. M. Aliyeva, S. M. Bagheri, Z. S. Aliev, et al., J. Alloys Compd. 611, 395 (2014). https://doi.org/10.1016/j.jallcom.2014.05.112

    Article  CAS  Google Scholar 

  36. V. A. Abbasova, I. J. Alverdiyev, L. F. Mashadiyeva, et al., Azerb. Chem. J. 30 (2017).

  37. Z. M. Alieva, S. M. Bageri, I. J. Alverdiev, et al., Inorg. Mater. 50, 981 (2014). https://doi.org/10.1134/S002016851410001X

    Article  CAS  Google Scholar 

  38. I. J. Alverdiev, V. A. Abbasova, Yu. A. Yusibov, et al., Russ. J. Electrochem. 54, 195 (2018). https://doi.org/10.7868/S0424857018020068

    Article  CAS  Google Scholar 

  39. I. J. Alverdiyev, Azerb. Chem. J., 70 (2019). https://doi.org/10.32737/0005-2531-2019-4-70-75

  40. G. M. Ashirov, Azerb. Chem. J., 89 (2022). https://doi.org/10.32737/0005-2531-2022-1-89-93

  41. Binary Alloy Phase Diagrams, Ed. by T. B. Massalski, vol. 3 (1990).

    Google Scholar 

  42. M. Oliveria, R. K. McMullan, and B. J. Wuensch, Solid State Ionics 28, 1332 (1988). https://doi.org/10.1016/0167-2738(88)90382-7

    Article  Google Scholar 

  43. G. A. Wiegers, Am. Mineral. 56, 1882 (1971).

    CAS  Google Scholar 

  44. J. Schneider and H. Schulz, Z. Kristallogr. 203, 1 (1993). https://doi.org/10.1524/zkri.1993.203.Part-1.1

    Article  CAS  Google Scholar 

  45. A. Van Der Lee and J. L. De Boer, Acta Crystallogr. 49, 1444 (1993).

  46. A. J. Frueh, Am. Mineral. 46, 654 (1961).

    CAS  Google Scholar 

  47. R. Ollitrault-Fichet, J. Rivet, and J. J. Flahaut, J. Less-Common Met. 114, 273 (1985). https://doi.org/10.1016/0022-5088(85)90445-X

    Article  CAS  Google Scholar 

  48. Yu. A. Yusibov, I. Dzh. Alverdiev, F. S. Ibragimova, et al., Russ. J. Inorg. Chem. 62, 1223 (2017). https://doi.org/10.1134/S0036023617090182

    Article  CAS  Google Scholar 

  49. D. Carré, O. R. Fichet, and J. Flahaut, Acta Crystallogr., Sect 36, 245 (1980). https://doi.org/10.1107/S0567740880003032

  50. O. Gorochov, Bull. Soc. Chim. Fr. 2263 (1968).

  51. A. Ferhat, O. R. Fichet, and J. Rivet, J. Alloys Compd. 177, 337 (1991). https://doi.org/10.1016/0925-8388(91)90087-C

    Article  CAS  Google Scholar 

  52. N. Rysanek, P. Laruelle, and A. Katty, Acta. Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 32, 692 (1976).

    Article  Google Scholar 

  53. N. Aramov, I. Odin, and B. Z. Mladenova, Thermochim. Acta 20, 107 (1977).

    Article  CAS  Google Scholar 

  54. A. M. Hofmann, Silver–SeleniumTellurium, Ternary Alloys, vol. 2 (VCH, 1998).

    Google Scholar 

  55. V. M. Glazov, A. S. Burkhanov, and N. M. Saleeva, Izv. AN SSSR, Neorgan. Mater. 13, 917 (1977).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan (project No. EİF-BGM-4-RFTF-1/2017-21/11/4-M-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Imamaliyeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiraslanova, A.J., Mammadova, A.T., Imamaliyeva, S.Z. et al. 6Ag2Se + Ag8GeTe6 ↔ 6Ag2Te + Ag8GeSe6 Reciprocal System. Russ. J. Inorg. Chem. 68, 1054–1064 (2023). https://doi.org/10.1134/S0036023623601046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601046

Keywords:

Navigation