Skip to main content
Log in

Ceramics of the Cs2O–Al2O3 System Prepared by Solid-Phase Technology and the Glycine–Nitrate Combustion Process

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cs2OAl2O3 ceramic samples containing 20 and 33 mol % cesium oxide were prepared by сeramic technique and by the glycine–nitrate combustion process. The prepared samples were identified and characterized by X-ray powder diffraction and X-ray fluorescence analyses, scanning electron microscopy, and differential thermal analysis. X-ray powder diffraction and scanning electron microscopy showed that the phase composition and surface of the samples change significantly and nonmonotonically depending on the synthetic method used and the heat treatment parameters of the batch. Optimal synthetic conditions and heat treatment parameters for preparing Cs2O–Al2O3 samples were elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. Prins, J. Catal. 392, 336 (2020). https://doi.org/10.1016/j.jcat.2020.10.010

    Article  CAS  Google Scholar 

  2. G. Busca, Prog. Mater. Sci. 104, 215 (2019). https://doi.org/10.1016/j.pmatsci.2019.04.003

    Article  CAS  Google Scholar 

  3. C. Meephoka, C. Chaisuk, P. Samparnpiboon, and P. Praserthdam, Catal. Commun. 9, 546 (2008). https://doi.org/10.3390/cryst11060690

    Article  CAS  Google Scholar 

  4. P. S. Shreyas, B. P. Mahesh, S. Rajanna, and N. Rajesh, Mat. Tood. Proc. 45, 429 (2021). https://doi.org/10.1016/j.matpr.2020.12.1012

    Article  CAS  Google Scholar 

  5. L. I. Podzorova, A. A. Ilyicheva, O. I. Penkova, O. S. Antonova, A. S. Baikin, and A. A. Konovalov, Inorg. Mater. 55, 671 (2019). https://doi.org/10.1134/S0020168519060128

    Article  Google Scholar 

  6. W. Chaitree, S. Jiemsirilers, O. Mekasuwandumrong, et al., Catal. Today 164, 302 (2011). https://doi.org/10.1016/j.cattod.2010.11.004

    Article  CAS  Google Scholar 

  7. S. V. Tsybulya and G. N. Kryukova, Phys. Rev. B 77, 024112 (2008). https://doi.org/10.1103/PhysRevB.77.024112

    Article  CAS  Google Scholar 

  8. G. Paglia, C. E. Buckley, A. L. Rohl, et al., Phys. Rev. B 68, 144110 (2003). https://doi.org/10.1103/PhysRevB.68.144110

    Article  CAS  Google Scholar 

  9. M. Rudolph, M. Motylenko, and D. Rafaja, IUCrJ 6, 116 (2019). https://doi.org/10.1107/S2052252518015786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. Marí, K. C. Singh, M. Moya, et al., Opt. Quant. Electron. 47, 1569 (2015). https://doi.org/10.1007/s11082-014-9997-9

    Article  CAS  Google Scholar 

  11. M. N. Saeed Adel, Q. A. Al-Gunaid Murad, N. K. Subramani, et al., Pol.-Plast. Tech. Eng. 57, 1188 (2018). https://doi.org/10.1080/03602559.2017.1373402

    Article  CAS  Google Scholar 

  12. P. F. McMillan, A. Grzechnik, and H. Chotalla, J. Non-Cryst. Solids 226, 239 (1998). https://doi.org/10.1016/S0022-3093(98)00416-5

    Article  CAS  Google Scholar 

  13. K. Fukumi, S. Sakka, and T. Kokubo, J. Non-Cryst. Solids 93, 190 (1987). https://doi.org/10.1016/S0022-3093(87)80038-8

    Article  CAS  Google Scholar 

  14. N. Macleod, J. M. Keel, and R. M. Lambert, Catal. Lett. 86, 51 (2003). https://doi.org/10.1023/A:1022602807322

    Article  CAS  Google Scholar 

  15. A. A. Ansari, M. A. M. Khan, M. N. Khan, and S. A. Alrokayan, J. Semicond. 32, 1 (2011). https://doi.org/10.1088/1674-4926/32/4/043001

  16. C. Guéneau and J. L. Fleche, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 49, 67 (2015). https://doi.org/10.1016/j.calphad.2015.02.002

    Article  CAS  Google Scholar 

  17. V. L. Stolyarova, V. A. Vorozhtcov, S. I. Lopatin, et al., Rapid Commun. Mass Spectrom. 35, e8829 (2021).https://doi.org/10.1002/rcm.9079

  18. V. L. Stolyarova, V. A. Vorozhtcov, S. I. Lopatin, et al., Rapid Commun. Mass Spectrom. 35, e9097 (2021). https://doi.org/10.1002/rcm.9097

  19. O. S. Kaimieva, I. E. Sabirova, E. S. Buyanova, and S. A. Petrova, Russ. J. Inorg. Chem. 67, 1211 (2022). https://doi.org/10.1134/S0036023622090054

  20. A. E. Medveeva, E. V. Makhonina, L. S. Pechen, et al., Russ. J. Inorg. Chem. 67, 952 (2022). https://doi.org/10.1134/S0036023622070154

    Article  Google Scholar 

  21. E. V. Babaev, Russ. J. Gen. Chem. 80, 2590 (2010). https://doi.org/10.1134/S1070363210120261

    Article  CAS  Google Scholar 

  22. M. J. O’Donnell, C. Zhou, and W. L. Scott, J. Am. Chem. Soc. 118, 6070 (1996). https://doi.org/10.1021/ja9601245

    Article  Google Scholar 

  23. T. L. Simonenko, N. P. Simonenko, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 67, 1495 (2022). https://doi.org/10.1134/S0036023622600939

    Article  CAS  Google Scholar 

  24. O. B. Tomilin, E. E. Muryumin, M. V. Fadin, et al., Russ. J. Inorg. Chem. 67, 431 (2022). https://doi.org/10.1134/S0036023622040192

    Article  CAS  Google Scholar 

  25. J. Wang, H. Zhao, and Y. Wen, Electrochim. Acta 113, 679 (2013). https://doi.org/10.1016/j.electacta.2013.09.086

    Article  CAS  Google Scholar 

  26. V. D. Zhuravlev, V. G. Vasil’ev, E. V. Vladimirova, et al., Glass Phys. Chem. 36, 506 (2010). https://doi.org/10.1134/S1087659610040164

    Article  CAS  Google Scholar 

  27. F. Cardarelli, Materials Handbook (Springer-Verlag, London, 2008).

    Google Scholar 

  28. R.-S. Zhou and R. Snyder, Acta Crystallogr., Sect. B: Struct. Sci. 47, 617 (1991). https://doi.org/10.1107/S0108768191002719

    Article  Google Scholar 

  29. G. Langlet, C. R. Acad. Sci. 259, 3769 (1964).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the staff of the resource centers “X-ray Diffraction Methods of Investigation”, “Interdisciplinary Resource Centre for Nanotechnology”, “Innovative Technologies of Composite Nanomaterials”, and “Geomodel” of the science park of St. Petersburg State University.

Funding

This work was supported by Ministry of Education and Science of the Russian Federation (project No. 075-15-2021-1383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorova.

Ethics declarations

The authors declare that they have no conflicts of interest to disclose here.

Additional information

In commemoration of the 300th anniversary of St. Petersburg State University’s founding

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, A.V., Stolyarov, V.A., Pavelina, M.E. et al. Ceramics of the Cs2O–Al2O3 System Prepared by Solid-Phase Technology and the Glycine–Nitrate Combustion Process. Russ. J. Inorg. Chem. 68, 911–922 (2023). https://doi.org/10.1134/S0036023623600909

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623600909

Navigation