Skip to main content
Log in

Interaction of the Bipyridyl Gold(III) Complex with Anions of Thiol-Containing Acids in Aqueous Solution

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The equilibria of stepwise substitution Au(bipy)\({\text{Cl}}_{2}^{ + }\) + OH = Au(bipy)ClOH+ + Cl and Au(bipy)\({\text{Cl}}_{2}^{ + }\) + 2OH = Au(bipy)\(\left( {{\text{OH}}} \right)_{2}^{ + }\) + 2Cl in aqueous solution at T = 25°C and I = 0.2 M (NaCl), log β1 = 9.22, log β2 = 16.61 have been studied. For bipyridyl complexes Au(bipy)\({\text{X}}_{2}^{ + }\) (X = Cl, OH) at pH 2.0 and 7.4, redox interactions with anions of thiol-containing acids (glutathione, cysteine, thiomalate) have been studied. In all cases, at the initial stage, a rapid reduction of gold(III) to gold(I) was observed with the simultaneous release of bipyridyl. A detailed analysis of UV spectra showed that the main products of gold(III) reduction are highly stable gold(I) thiolate complexes. The presence of further slower steps depends on the initial ratio of thiol to gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. P. Brinas, M. Hu, L. Qian, et al., J. Am. Chem. Soc. 130, 975 (2008). https://doi.org/10.1021/ja076333e

    Article  CAS  PubMed  Google Scholar 

  2. G. Corthey, L. J. Giovanetti, J. M. Ramallo-Lopez, et al., ACS Nano 4, 3413 (2010). https://doi.org/10.1021/nn100272q

    Article  CAS  PubMed  Google Scholar 

  3. D. H. Brown and W. E. Smith, J. Chem. Soc., Dalton Trans. 217 (1980).

  4. C. Gabbiani, A. Casini, and L. Messori, Gold Bull. 40, 73 (2007). https://doi.org/10.1007/BF03215296

    Article  CAS  Google Scholar 

  5. S. Radisavljević and B. Petrović, Front. Chem. 8, 379 (2020). https://doi.org/10.3389/fchem.2020.00379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Alhoshani, A. A. A. Sulaiman, H. M. A. Sobeai, et al., Molecules 26, 3973 (2021). https://doi.org/10.3390/molecules26133973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. I. V. Mironov and V. Yu. Kharlamova, Inorg. Chim. Acta 525, 120500 (2021). https://doi.org/10.1016/j.ica.2021.120500

    Article  CAS  Google Scholar 

  8. I. V. Mironov and V. Yu. Kharlamova, Russ. J. Inorg. Chem. 67, 1051 (2022). https://doi.org/10.1134/S0036023622070166

    Article  CAS  Google Scholar 

  9. S. Nobili, E. Mini, I. Landini, et al., Med. Res. Rev. 30, 550 (2010). https://doi.org/10.1002/med.20168

    Article  CAS  PubMed  Google Scholar 

  10. I. V. Mironov and V. Yu. Kharlamova, J. Solution Chem. 49, 583 (2020). https://doi.org/10.1007/s10953-020-00994-0

    Article  CAS  Google Scholar 

  11. N. S. Akhmadullina, A. V. Churakov, V. M Retivov, et al., Russ. J. Coord. Chem. 38, 589 (2012). https://doi.org/10.1134/S1070328412080015

    Article  CAS  Google Scholar 

  12. V. V. Avdeeva, A. V. Vologzhanina, A. S. Kubasov, et al., Inorganics 10, 99 (2022). https://doi.org/10.3390/inorganics10070099

    Article  CAS  Google Scholar 

  13. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions (Reinhold, New York, 1950).

    Google Scholar 

  14. I. V. Mironov and V. Yu. Kharlamova, J. Solution Chem. 47, 511 (2018). https://doi.org/10.1007/s10953-018-0735-y

    Article  CAS  Google Scholar 

  15. T. Jakusch, P. Buglyó, A. I. Tomaz, et al., Inorg. Chim. Acta 339, 119 (2002). https://doi.org/10.1016/S0020-1693(02)00919-2

    Article  CAS  Google Scholar 

  16. D. J. LeBlanc, R. W. Smith, Z. Wang, et al., J. Chem. Soc., Dalton Trans. 18, 3263 (1997). https://doi.org/10.1039/A700827I

    Article  Google Scholar 

  17. M. D. Đurović, Ž. D. Bugarčić, F. W. Heinemann, and R. Eldik, Dalton Trans. 43, 3911 (2014). https://doi.org/10.1039/C3DT53140F

    Article  PubMed  Google Scholar 

  18. Y. Liu, H. Tian, L. Xu, et al., Int. J. Mol. Sci. 20, 5660 (2019). https://doi.org/10.3390/ijms20225660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. H. Brown, M. Paton, and W. E. Smith, Inorg. Chim. Acta 66, L51 (1982).

    Article  CAS  Google Scholar 

  20. A. Casini, G. Kelter, C. Gabbiani, et al., J. Biol. Inorg. Chem. 14, 1139 (2009). https://doi.org/10.1007/s00775-009-0558-9

    Article  CAS  PubMed  Google Scholar 

  21. L. Messori, G. Marcon, and P. Orioli, Bioinorg. Chem. Appl. 2, 177 (2003). https://doi.org/10.1155/S1565363303000141

    Article  Google Scholar 

  22. G. Marcon, S. Carotti, M. Coronnello, et al., J. Med. Chem. 45, 1672 (2002). https://doi.org/10.1021/jm010997w

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 121031700315-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mironov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, I.V., Kharlamova, V.Y. & Hu, J. Interaction of the Bipyridyl Gold(III) Complex with Anions of Thiol-Containing Acids in Aqueous Solution. Russ. J. Inorg. Chem. 68, 287–293 (2023). https://doi.org/10.1134/S0036023622602422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622602422

Keywords:

Navigation