Skip to main content
Log in

The Cu2+ and Zn2+ Heterobinuclear Complexes Based on Gold(I) Glutathionate Complexes in Aqueous Solution

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Reaction of Cu2+ and Zn2+ with highly stable glutathionate gold(I) complexes in aqueous solution (T = 25°C, I = 0.2 M (NaCl)) has been studied, the reaction gives rise to formation of heterobinuclear complexes where glutathionate coordinates to gold(I) via deprotonated thiol group, while copper(II) or zinc(II) are bound to the glycinate fragments (GF) of glutathione. It has been shown that copper(II) in solution binds to two GF related to different glutathionate ions, while zinc(II) binds to one GF. In the pH region 6–9, for (AuGS)m\({\text{H}}_{m}^{{m-}}\)polymeric 1 : 1 complex, the most probable forms of heterobinuclear complexes are (AuGS)mCun\({\text{H}}_{{m\,\, - \,\,2n}}^{{m-}}\) and (AuGS)m(ZnOH)n\({\text{H}}_{{m\,\, - \,\,n}}^{{m-}}\) with variable number of M2+, where GS3– is deprotonated glutathione residue. The solutions remain homogeneous until \(C_{{\text{M}}}^{{2 + }}\) : CGS < 0.5. Formation of solid phases of complexes is observed at \(C_{{\text{M}}}^{{2 + }}\) : CGS > 0.5

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. V. Makotchenko, I. A. Baidina, and I. V. Korol’kov, Russ. J. Inorg. Chem. 64, 41 (2019). https://doi.org/10.1134/S0036023619010157

  2. N. V. Cherkashina, A. V. Churakov, I. A. Yakushev, et al., Russ. J. Coord. Chem. 45, 253 (2019). https://doi.org/10.1134/S107032841904002X

    Article  CAS  Google Scholar 

  3. G. Y. Zhigulin, G. S. Zabrodina, M. A. Katkova, and S. Y. Ketkov, Russ. J. Coord. Chem. 45, 356 (2019). https://doi.org/10.1134/S107032841905004X

    Article  CAS  Google Scholar 

  4. M. Wenzel, E. Bigaeva, P. Richard, et al., J. Inorg. Biochem. 141, 10 (2014). https://doi.org/10.1016/j.jinorgbio.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  5. M. Wenzel, A. de Almeida, E. Bigaeva, et al., Inorg. Chem. 55, 2544 (2016). https://doi.org/10.1021/acs.inorgchem.5b02910

    Article  CAS  PubMed  Google Scholar 

  6. A. Majzik, L. Fulop, E. Csapó, et al., Colloids Surf. 81, 235 (2010). https://doi.org/10.1016/j.colsurfb.2010.07.011

    Article  CAS  Google Scholar 

  7. M. Bieri and T. Burgi, Phys. Chem. Chem. Phys. 8, 513 (2006). https://doi.org/10.1039/b511146c

    Article  CAS  PubMed  Google Scholar 

  8. H. Ao, H. Feng, K. Li, et al., Sens. Actuators, B: Chem. 272, 1 (2018). https://doi.org/10.1016/j.snb.2018.05.151

    Article  CAS  Google Scholar 

  9. B. Söptei, J. Mihály, I. Cs. Szigyártó, et al., Colloids Surf. A 470, 8 (2015). https://doi.org/10.1016/j.colsurfa.2015.01.048

    Article  CAS  Google Scholar 

  10. Z. Luo, X. Yuan, Y. Yu, et al., J. Am. Chem. Soc. 134, 16662 (2012). https://doi.org/10.1021/ja306199p

    Article  CAS  PubMed  Google Scholar 

  11. D. H. Brown and W. E. Smith, J. Chem. Soc., Dalton Trans. 9, 217 (1980).

    CAS  Google Scholar 

  12. C. F. Shaw III, Chem. Rev. 99, 2589 (1999). https://doi.org/10.1021/cr980431o

    Article  CAS  Google Scholar 

  13. F. Mohr, Gold Chemistry (Wiley-VCH Verlag GmbH & Co, Weinheim, 2009).

    Book  Google Scholar 

  14. I. V. Mironov and V. Yu. Kharlamova, J. Sol. Chem. 47, 511 (2018). https://doi.org/10.1007/s10953-018-0735-y

    Article  CAS  Google Scholar 

  15. C. H. Gammons, Y. Yunmei, and A. E. Wiliams-Jones, Geochim. Cosmochim. Acta 61, 1971 (1997). https://doi.org/10.1016/S0016-7037(97)00060-4

    Article  CAS  Google Scholar 

  16. I. V. Mironov and V. Yu. Kharlamova, Russ. J. Inorg. Chem. 61, 123 (2016). https://doi.org/10.1134/S0036023616010174

    Article  CAS  Google Scholar 

  17. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions (Reinhold, New York, 1950).

    Google Scholar 

  18. I. V. Mironov and V. Yu. Kharlamova, J. Solution Chem. 49, 583 (2020). https://doi.org/10.1007/s10953-020-00994-0

    Article  CAS  Google Scholar 

  19. P. Nagy and C. C. Winterbourn, Adv. Mol. Toxicol. 4, 189 (2010). https://doi.org/10.1016/S1872-0854(10)04006-3

    Article  CAS  Google Scholar 

  20. T. Kiss, I. Sovago, and A. Gergely, Pure Appl. Chem. 63, 597 (1991). https://doi.org/10.1351/pac199163040597

    Article  Google Scholar 

  21. T. R. Usacheva, L. Pham Thi, K. I. Kuzmina, and V. A. Sharnin, J. Therm. Anal. Calorim. 130, 471 (2017). https://doi.org/10.1007/s10973-017-6207-6

    Article  CAS  Google Scholar 

  22. H. Kozlowski, W. Bal, M. Dyba, and T. Kowalik-Jankowska, Coord. Chem. Rev. 184, 319 (1999). https://doi.org/10.1016/S0010-8545(98)00261-6

    Article  CAS  Google Scholar 

  23. K. Miyoshi, Y. Sugiura, K. Ishizu, et al., J. Am. Chem. Soc. 102, 6131 (1980). https://doi.org/10.1021/ja00539a027

    Article  Google Scholar 

  24. I. Sóvágó, C. Kállay, and K. Várnagy, Coord. Chem. Rev. 256, 2225 (2012). https://doi.org/10.1016/j.ccr.2012.02.026

    Article  CAS  Google Scholar 

  25. J. Z. Pedersen, C. Steinkuhler, U. Weser, and G. Rotilio, Biometals 9, 3 (1996). https://doi.org/10.1007/BF00188083

    Article  CAS  Google Scholar 

  26. I. Sóvágó and O. Katalin, Dalton Trans. 3841 (2006). https://doi.org/10.1039/b607515k

  27. M. Farrag and R. A. Mohamed, J. Photochem. Photobiol., A: Chem. 330, 117 (2016). https://doi.org/10.1016/j.jphotochem.2016.07.027

    Article  CAS  Google Scholar 

  28. J. Berger, J. Raman Spectrosc. 5, 103 (1976). https://doi.org/10.1002/jrs.1250050202

    Article  CAS  Google Scholar 

  29. A. W. Herlinger, S. L. Wenhold, and T. Veach Long II, J. Am. Chem. Soc. 92, 6474 (1970). https://doi.org/10.1021/ja00725a015

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry Science and Higher Education of the Russian Federation, project no. 121031700315-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mironov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, I.V., Kharlamova, V.Y. The Cu2+ and Zn2+ Heterobinuclear Complexes Based on Gold(I) Glutathionate Complexes in Aqueous Solution. Russ. J. Inorg. Chem. 67, 231–236 (2022). https://doi.org/10.1134/S0036023622020097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622020097

Keywords:

Navigation