Skip to main content
Log in

Sodium-Stabilized Hexagonal Borophene: Structure, Stability, and Electronic and Mechanical Properties

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The crystalline form of sodium-doped hexagonal borophene (B2Na2) has been studied using DFT calculations. The calculations predict the dynamic stability of B2Na2 whose structure is a flat honeycomb boron sheet sandwiched between two sodium layers. According to estimated electronic and mechanical properties, B2Na2 is a rather soft material with metallic characteristics. Evaluation of thermal stability by the molecular dynamics method indicates sufficient stability of the predicted material, which makes it possible to observe it experimentally at temperatures below 200 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  2. B. Aufray, A. Kara, S. Vizzini, et al., Appl. Phys. Lett. 96, 183102 (2010). https://doi.org/10.1063/1.3419932

    Article  CAS  Google Scholar 

  3. B. Lalmi, H. Oughaddou, H. Enriquez, et al., Appl. Phys. Lett. 97, 223109 (2010). https://doi.org/10.1063/1.3524215

    Article  CAS  Google Scholar 

  4. I. Boustani, Phys. Rev. B: Condens. Matter Mater. Phys. 55, 16426 (1997). https://doi.org/10.1103/PhysRevB.55.16426

    Article  CAS  Google Scholar 

  5. K. C. Lau and R. Pandey, J. Phys. Chem. C 111, 2906 (2007). https://doi.org/10.1021/jp066719w

    Article  CAS  Google Scholar 

  6. K. C. Lau and R. Pandey, J. Phys. Chem. B 112, 10217 (2008). https://doi.org/10.1021/jp8052357

    Article  CAS  PubMed  Google Scholar 

  7. L. Z. Zhang, Q. B. Yan, S. X. Du, et al., J. Phys. Chem. C 116, 18202 (2012). https://doi.org/10.1021/jp303616d

    Article  CAS  Google Scholar 

  8. H. Liu, J. Gao, and J. Zhao, Sci. Rep. 3, 3238 (2013). https://doi.org/10.1038/srep03238

    Article  PubMed  PubMed Central  Google Scholar 

  9. Y. Liu, E. S. Penev, and B. I. Yakobson, Angew. Chem., Int. Ed. 52, 3156 (2013). https://doi.org/10.1002/anie.201207972

    Article  CAS  Google Scholar 

  10. Z. Zhang, Y. Yang, G. Gao, et al., Angew. Chem., Int. Ed. 54, 13022 (2015). https://doi.org/10.1002/anie.201505425

    Article  CAS  Google Scholar 

  11. A. J. Mannix, X.-F. Zhou, B. Kiraly, et al., Science 350, 1513 (2015). https://doi.org/10.1126/science.aad1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B. Feng, J. Zhang, Q. Zhong, et al., Nat. Chem. 8, 563 (2016). https://doi.org/10.1038/nchem.2491

    Article  CAS  PubMed  Google Scholar 

  13. R. Wu, A. Gozar, and I. Božović, npj Quantum Mater. 4, 40 (2019). https://doi.org/10.1038/s41535-019-0181-0

  14. R. Wu, I. K. Drozdov, S. Eltinge, et al., Nat. Nanotechnol. 14, 44 (2019). https://doi.org/10.1038/s41565-018-0317-6

    Article  CAS  PubMed  Google Scholar 

  15. B. Kiraly, X. Liu, L. Wang, et al., ACS Nano 13, 3816 (2019). https://doi.org/10.1021/acsnano.8b09339

    Article  CAS  PubMed  Google Scholar 

  16. W. Li, L. Kong, C. Chen, et al., Sci. Bull. 63, 282 (2018). https://doi.org/10.1016/j.scib.2018.02.006

    Article  CAS  Google Scholar 

  17. L. Zhu, B. Zhao, T. Zhang, et al., J. Phys. Chem. C 123, 14858 (2019). https://doi.org/10.1021/acs.jpcc.9b03447

    Article  CAS  Google Scholar 

  18. S. N. Shirodkar, E. S. Penev, and B. I. Yakobson, Sci. Bull. 63, 270 (2018). https://doi.org/10.1016/j.scib.2018.02.019

    Article  CAS  Google Scholar 

  19. Z. Zhang, S. N. Shirodkar, Y. Yang, et al., Angew. Chem., Int. Ed. 56, 15421 (2017). https://doi.org/10.1002/anie.201705459

    Article  CAS  Google Scholar 

  20. Z.-Q. Wang, T.-Y. Lü, H.-Q. Wang, et al., Front. Phys. 14, 33403 (2019). https://doi.org/10.1007/s11467-019-0884-5

    Article  CAS  Google Scholar 

  21. Z. Zhang, Y. Yang, E. S. Penev, et al., Adv. Funct. Mater. 27, 1605059 (2017). https://doi.org/10.1002/adfm.201605059

    Article  CAS  Google Scholar 

  22. A. J. Mannix, Z. Zhang, N. P. Guisinger, et al., Nat. Nanotechnol. 13, 444 (2018). https://doi.org/10.1038/s41565-018-0157-4

    Article  CAS  PubMed  Google Scholar 

  23. Z. Zhang, E. S. Penev, and B. I. Yakobson, Chem. Soc. Rev. 46, 6746 (2017). https://doi.org/10.1039/c7cs00261k

    Article  CAS  PubMed  Google Scholar 

  24. S.-Y. Xie, Y. Wang, and X.-B. Li, Adv. Mater. 31, 1900392 (2019). https://doi.org/10.1002/adma.201900392

    Article  CAS  Google Scholar 

  25. T. N. Gribanova, R. M. Minyaev, V. I. Minkin, et al., Struct. Chem. 31, 2105 (2020). https://doi.org/10.1007/s11224-020-01606-9

    Article  CAS  Google Scholar 

  26. Z. Xie, X. Meng, X. Li, et al., Research 2020, 2624617 (2020). https://doi.org/10.34133/2020/2624617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. X. Zhang, J. Hu, Y. Cheng, et al., Nanoscale 8, 15340 (2016). https://doi.org/10.1039/c6nr04186h

    Article  CAS  PubMed  Google Scholar 

  28. S. Banerjee, G. Periyasamy, and S. K. Pati, J. Mater. Chem. A 2, 3856 (2014). https://doi.org/10.1039/c3ta14041e

    Article  CAS  Google Scholar 

  29. H. R. Jiang, Z. Lu, M. C. Wu, et al., Nano Energy 23, 97 (2016). https://doi.org/10.1016/j.nanoen.2016.03.013

    Article  CAS  Google Scholar 

  30. S. Haldar, S. Mukherjee, and C. V. Singh, RSC Adv. 8, 20748 (2018). https://doi.org/10.1039/c7ra12512g

  31. X. Chen, L. Wang, W. Zhang, et al., Int. J. Hydrogen Energy 42, 20036 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.143

    Article  CAS  Google Scholar 

  32. L. Shi, C. Ling, Y. Ouyang, et al., Nanoscale 9, 533 (2017). https://doi.org/10.1039/c6nr06621f

    Article  CAS  PubMed  Google Scholar 

  33. Y. Wang, X. Jiang, Y. Wang, et al., Phys. Chem. 23, 17150 (2021). https://doi.org/10.1039/d1cp01708j

    Article  CAS  Google Scholar 

  34. D. John, B. Nharangatt, and R. Chatanathodi, J. Mater. Chem. C 7, 11493 (2019). https://doi.org/10.1039/c9tc03628h

    Article  CAS  Google Scholar 

  35. E. A. Malinina, V. V. Avdeeva, L. V. Goeva, et al., Russ. J. Inorg. Chem. 55, 2148 (2010). https://doi.org/10.1134/s0036023610140032

    Article  CAS  Google Scholar 

  36. S. P. Ionov and N. T. Kuznetsov, Russ. J. Inorg. Chem. 56, 1589 (2011). https://doi.org/10.1134/s0036023611100123

    Article  CAS  Google Scholar 

  37. T. N. Gribanova, R. M. Minyaev, and V. I. Minkin, Struct. Chem. 29, 327 (2018). https://doi.org/10.1007/s11224-017-1031-y

    Article  CAS  Google Scholar 

  38. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys. 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  39. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys. 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  40. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  41. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  42. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, et al., Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  CAS  PubMed  Google Scholar 

  43. P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  44. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  45. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Condens. Matter Mater. Phys. 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  46. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  CAS  Google Scholar 

  47. S. Nosé, J. Chem. Phys. 81, 511 (1984). https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  48. M. Koichi and I. Fujio, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  49. J. Emsley, The Elements, 2nd ed. (Clarendon Press, Oxford, 1991).

    Google Scholar 

  50. F. Mouhat and F.-X. Coudert, Phys. Rev. B: Condens. Matter Mater. Phys. 90, 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104

    Article  CAS  Google Scholar 

  51. V. A. Lubarda and M. C. Chen, J. Mech. Mater. Struct. 3, 153 (2008).

    Article  Google Scholar 

  52. X. Wei, B. Fragneaud, C. A. Marianetti, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 80, 205407 (2009). https://doi.org/10.1103/PhysRevB.80.205407

    Article  CAS  Google Scholar 

  53. E. Cadelano, P. L. Palla, S. Giordano, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 82, 235414 (2010). https://doi.org/10.1103/PhysRevB.82.235414

    Article  CAS  Google Scholar 

  54. K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, Phys. Rev. B: Condens. Matter Mater. Phys. 64, 235406 (2001). https://doi.org/10.1103/PhysRevB.64.235406

    Article  CAS  Google Scholar 

  55. C. Lee, X. Wei, J. W. Kysar, et al., Science 321, 385 (2008). https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  56. A. Falin, Q. Cai, E. J. G. Santos, et al., Nat. Commun. 8, 15815 (2017). https://doi.org/10.1038/ncomms15815

    Article  PubMed  PubMed Central  Google Scholar 

  57. J. Li, Y. Wei, X. Fan, et al., J. Mater. Chem. C 4, 9613 (2016). https://doi.org/10.1039/c6tc03710k

    Article  CAS  Google Scholar 

  58. J. Li, X. Fan, Y. Wei, et al., J. Mater. Chem. C 4, 10866 (2016). https://doi.org/10.1039/c6tc03584a

    Article  CAS  Google Scholar 

  59. L. Yan, T. Bo, W. Zhang, et al., Phys. Chem. Chem. Phys. 21, 15327 (2019). https://doi.org/10.1039/c9cp02727k

    Article  CAS  PubMed  Google Scholar 

  60. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011). https://doi.org/10.1021/nn203879f

    Article  CAS  PubMed  Google Scholar 

  61. R. C. Cooper, C. Lee, C. A. Marianetti, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 87, 035423 (2013). https://doi.org/10.1103/PhysRevB.87.035423

    Article  CAS  Google Scholar 

  62. H. Şahin, S. Cahangirov, M. Topsakal, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 80, 155453 (2009). https://doi.org/10.1103/PhysRevB.80.155453

    Article  CAS  Google Scholar 

  63. J.-P. Tang, W.-Z. Xiao, and L.-L. Wang, Mater. Sci. Eng. B 228, 206 (2018). https://doi.org/10.1016/j.mseb.2017.12.003

    Article  CAS  Google Scholar 

  64. L.-M. Yang, V. Bačić, I. A. Popov, et al., J. Am. Chem. Soc. 137, 2757 (2015). https://doi.org/10.1021/ja513209c

    Article  CAS  PubMed  Google Scholar 

  65. N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, Phys. Rev. B: Condens. Matter Mater. Phys. 85, 075423 (2012). https://doi.org/10.1103/PhysRevB.85.075423

    Article  CAS  Google Scholar 

  66. M. E. Dávila, L. Xian, S. Cahangirov, et al., New J. Phys. 16, 095002 (2014). https://doi.org/10.1088/1367-2630/16/9/095002

    Article  CAS  Google Scholar 

  67. J. Ding, M. Xu, P. F. Guan, et al., J. Chem. Phys. 140, 064501 (2014). https://doi.org/10.1063/1.4864106

    Article  CAS  PubMed  Google Scholar 

  68. J. Sun, P. Liu, M. Wang, et al., Sci. Rep. 10, 3408 (2020). https://doi.org/10.1038/s41598-020-60416-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. M. Klintenberg, S. Lebègue, C. Ortiz, et al., J. Phys.: Condens. Matter. 21, 335502 (2009). https://doi.org/10.1088/0953-8984/21/33/335502

    Article  CAS  PubMed  Google Scholar 

  70. Q. Peng, W. Ji, and S. De, Comput. Mater. Sci. 56, 11 (2012). https://doi.org/10.1016/j.commatsci.2011.12.029

    Article  CAS  Google Scholar 

  71. Q. Peng, X. Wen, and S. De, RSC Adv. 3, 13772 (2013). https://doi.org/10.1039/c3ra41347k

  72. R. C. Andrew, R. E. Mapasha, A. M. Ukpong, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 85, 125428 (2012). https://doi.org/10.1103/PhysRevB.85.125428

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State assignment in the field of scientific activity no. 0852-2020-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Steglenko.

Ethics declarations

The authors declared no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steglenko, D.V., Gribanova, T.N., Minyaev, R.M. et al. Sodium-Stabilized Hexagonal Borophene: Structure, Stability, and Electronic and Mechanical Properties. Russ. J. Inorg. Chem. 68, 60–68 (2023). https://doi.org/10.1134/S0036023622601477

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601477

Keywords:

Navigation