Skip to main content
Log in

Thermochemistry of Iridium Fluorides

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The experimental data on the joint fluorination of metallic iridium and platinum with molecular fluorine in the temperature range 654–880 K have been analyzed. The reasons for the decrease in the thermodynamic activity of metals and the possibility of the formation of new phases on their surfaces have been quantitatively considered. The ΔrH°(0) of reactions, kJ/mol, have been determined: Ir(c) + PtF4(g) = IrF4(g) + Pt(c), 23.0 ± 4.5; Ir(c) + 2IrF6(g) = 3IrF4(g), 217.7 ± 8.6; Ir2F6(c) + IrF6(g) = 3IrF4(g), 396.2 ± 21.3. The standard enthalpies of formation of the following iridium fluorides have been recommended: ΔfH°(Ir2F6, c, 0) = ‒1012.6 ± 15.5 kJ/mol, ΔfH°(IrF4, g, 0) = –482.3 ± 7.7 kJ/mol, and ΔfH°(IrF6, g, 0) = –832.3 ± 12.7 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. V. Dzhalavyan, E. G. Rakov, and A. S. Dudin, Russ. Chem. Rev. 52, 960 (1983). https://doi.org/10.1070/RC1983v052n10ABEH002908

    Article  Google Scholar 

  2. A. A. Bondarenko, Cand. Sci. (Chem.) Dissertation, Moscow, 1987.

  3. A. A. Bondarenko, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow, 1987.

  4. J. B. Mann, J. Chem. Phys. 46, 1646 (1967). https://doi.org/10.1063/1.1840917

    Article  CAS  Google Scholar 

  5. A. Tressaud, F. Pintchoovski, L. Lozano, et al., Mater. Res. Bull. 11, 689 (1976). https://doi.org/10.1016/0025-5408(76)90146-X

    Article  CAS  Google Scholar 

  6. M. I. Nikitin and E. V. Karpukhina, Russ. J. Inorg. Chem. 52, 475 (2007). https://doi.org/10.1134/s003602360704002x

    Article  Google Scholar 

  7. M. I. Nikitin, Russ. J. Inorg. Chem. 53, 1292 (2008). https://doi.org/10.1134/s0036023608080238

    Article  Google Scholar 

  8. M. V. Korobov, Doctoral Sci. (Chem.) Dissertation, Moscow, 1989.

  9. M. V. Korobov, V. N. Mitkin, and L. N. Sidorov, J. Chem. Thermodyn. 20, 299 (1988).https://doi.org/10.1016/0021-9614(88)90125-5

  10. K. F. Zmbov and J. L. Margrave, J. Inorg. Nucl. Chem. 29, 673 (1967). https://doi.org/10.1016/0022-1902(67)80322-1

    Article  CAS  Google Scholar 

  11. State Diagrams of Binary Metal Systems: A Handbook, vols. 1–3, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996) [in Russian].

    Google Scholar 

  12. M. I. Nikitin and E. N. Karpukhina, Russ. J. Inorg. Chem. 52, 334 (2007). https://doi.org/10.1134/s0036023607030072

  13. O. Ruff and J. Fischer, Z. Anorg. Allg. Chem. 179, 161 (1929). https://doi.org/10.1002/zaac.19291790113

    Article  CAS  Google Scholar 

  14. M. Binneweis and E. Milke, Thermochemical Data of Elements and Compounds (2002). https://doi.org/10.1002/9783527618347

  15. E. G. Rakov, A. V. Dzhalavyan, and A. S. Dudin, Proceedigs of II Meetings on Chemistry and Technology of Rare and Trace Elements, Erevan, 1981, p. 93.

  16. Thermal Constants of Substances. A Handbook, vols. 1–10, Ed. by V. P. Glushko, vol. 7, part 1 (VINITI, Moscow, 1974) [in Russian].

    Google Scholar 

  17. G. H. Cady and G. B. Hargreaves, J. Chem. Soc. 1063 (1961). https://doi.org/10.1039/jr9610001568

  18. N. Bartlett and D. H. Lohmann, Proc. Chem. Soc. 115 (1962).

  19. N. Bartlet, Syntheses of Inorganic Compounds, vol. 2 (Mir, Moscow, 1967) [in Russian].

  20. M. I. Nikitin and S. G. Zbezhneva, Russ. High Temp. 50, 186 (2012). https://doi.org/10.1134/S0018151X12020125

    Article  CAS  Google Scholar 

  21. C. L. Chernick, H. H. Claasen, and B. Weinstock, J. Am. Chem. Soc. 83, 1365 (1961).

    Article  Google Scholar 

  22. W. A. Sunder and W. E. Falconer, Inorg. Nucl. Chem. Lett. 8, 537 (1972). https://doi.org/10.1016/0020-1650(72)80136-3

    Article  CAS  Google Scholar 

  23. P. L. Robinson and G. J. Westland, J. Chem. Soc. 4481 (1956). https://doi.org/10.1039/JR9560004481 .

  24. S. Riedel and M. Kaupp, Chem. Int. Ed. 45, 3708 (2006). https://doi.org/10.1002/anie.200600274

  25. B. A. Maklin and J. Withers, Proceedings of the II International Conference on Chemical Vapor Deposition, Los Angeles, New York, 1970, p. 161.

  26. K. R. Sump and B. D. Howard, Proceedings of the II International Conference on Chemical Vapor Deposition, Los Angeles, New York, 1970, p. 521.

  27. S. V. Kuznetsov, Cand. Sci. (Chem.) Dissertation, Moscow, 1987.

  28. JANAF https://janaf.nist.gov/

  29. Thermodynamic Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  30. L. V. Gurvich, Vestn. AN SSSR 3, 54 (1983).

    Google Scholar 

Download references

Funding

The study was performed in the framework of the state assignment of IGIC RAS in the field of basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Alikhanyan.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ADDITIONAL INFORMATION

The thermodynamic functions of gaseous iridium(IV, VI) fluorides are tabulated in [27], but in the present work, the statistical weight of the ground electronic state g0 for IrF4 is replaced by 4, for IrF6 by 6, and for PtF4 by 10. Φ°(IrF5(g), T) is taken the same as for RuF5 [27] with g0 replaced by 5 and a correction for the mass ratio of these molecules is applied.

For crystalline fluorides IrF4 and Ir2F6, estimates were made, as in [5, 7], for the corresponding platinum fluorides. The presented thermodynamic potential of crystalline iridium tetrafluoride Φ°(IrF4(c), T) and its temperature dependence are taken to be similar for ZrF4(c) [28], with allowance for the difference in the Latimer contributions for Zr and Ir (added 13 J/(mol K)). Φ°(Ir2F6(c), T) and its temperature dependence are taken to be the same as for GaF3(c) [29], with allowance for the difference between the Latimer contributions for Ga and Ir (added 16.7 J/(mol K)), and Ф°(Ir2F6(c), T) = 2[Ф°(GaF3(c), T) + 16.7].

For metallic iridium and platinum, the data were taken from [30].

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, M.I., Alikhanyan, A.S. Thermochemistry of Iridium Fluorides. Russ. J. Inorg. Chem. 67, 1794–1802 (2022). https://doi.org/10.1134/S0036023622600940

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622600940

Keywords:

Navigation