Skip to main content
Log in

Plasma Electrolytic Formation and Photoelectrochemical Properties of Zr- and/or Ce-Containing Oxide Layers on Titanium

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ti/TiO2–ZrTiO4–ZrO2, Ti/TiO2–CeO2, and Ti/TiO2–ZrTiO4 composites have been fabricated by the one-stage plasma electrolytic oxidation (PEO) in aqueous electrolytes containing 0.05 mol/L Zr(SO4)2, 0.05 mol/L Ce(SO4)2, or their mixtures, respectively. The surface morphology and composite composition have been studied by scanning electron microscopy, X-ray powder diffraction, and energy dispersive analysis. The photoelectrochemical properties of the composites have been studied under UV light in the potential range of 0.0–1.2 V. The Ti/TiO2–ZrTiO4–ZrO2 composites exhibit high photoelectrochemical activity: they generate photocurrents of 73 μA without potential and 230 μA in the potential range from 0.2 to 1.2 V. Such composites are promising as active photoanodes for water splitting. The introduction of cerium into the PEO coatings leads to a sharp decrease in photocurrents (0.1–10 μA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Maeda and K. Domen, J. Phys. Chem. Lett. 1, 2655 (2010). https://doi.org/10.1021/jz1007966

    Article  CAS  Google Scholar 

  2. T. Hisatomi, J. Kubota, and K. Domen, Chem. Soc. Rev. 43, 7520 (2014). https://doi.org/10.1039/c3cs60378d

    Article  CAS  PubMed  Google Scholar 

  3. M. B. Vasić, M. S. Randjelović, M. Z. Momćilović, et al., Process. Appl. Ceram. 10, 189 (2016). https://doi.org/10.2298/PAC1603189V

    Article  Google Scholar 

  4. Yu. S. Kudryashova, A. V. Zdravkov, V. L. Ugolkov, et al., Glass Phys. Chem. 46, 335 (2020). https://doi.org/10.1134/S1087659620040082

    Article  CAS  Google Scholar 

  5. P. Chawla and M. Tripathi, Int. J. Hydrogen Energy 41, 7987 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.118

    Article  CAS  Google Scholar 

  6. P. Z. Duan, S. H. Gao, X. Lia, et al., J. Electroanal. Chem. 841, 10 (2019). https://doi.org/10.1016/j.jelechem.2019.03.061

    Article  CAS  Google Scholar 

  7. M. E. Contreras-García, M. L. García-Benjume, V. I. Macías-Andrés, et al., Mater. Sci. Eng. B 183, 78 (2014). https://doi.org/10.1016/j.mseb.2014.01.007

    Article  CAS  Google Scholar 

  8. J. Lukáč, M. Klementová, P. Bezdička, et al., Appl. Catal. B: Environ. 74, 83 (2007). https://doi.org/10.1016/j.apcatb.2007.01.014

    Article  CAS  Google Scholar 

  9. E. A. Kusmierek, Catalysts 10, 1435 (2020). https://doi.org/10.3390/catal10121435

    Article  CAS  Google Scholar 

  10. K. P. Singh, C. H. Shin, H. Y. Lee, et al., ACS Appl. Nano Mater. 3, 3634 (2020). https://doi.org/10.1021/acsanm.0c00346

    Article  CAS  Google Scholar 

  11. V. Kumar, W. F. Chen, X. C. Zhang, et al., Ceram. Int. 45, 22085 (2019). https://doi.org/10.1016/j.ceramint.2019.07.225

    Article  CAS  Google Scholar 

  12. B. T. Jiang, S. Y. Zhang, X. Z. Guo, et al., Appl. Surf. Sci. 255, 5975 (2009). https://doi.org/10.1016/j.apsusc.2009.01.049

    Article  CAS  Google Scholar 

  13. M. Molaei, M. Nouri, K. Babaei, et al., Surf. Interfaces 22, 100888 (2021). https://doi.org/10.1016/j.surfin.2020.100888

    Article  CAS  Google Scholar 

  14. K. Zhou, F. Q. Xie, X. Q. Wu, et al., Materials 13, 11 (2020). https://doi.org/10.3390/ma13010011

    Article  CAS  Google Scholar 

  15. M. Aliofkhazraei, R. S. Gharabagh, M. Teimouri, et al., J. Alloys Compd. 685, 376 (2016). https://doi.org/10.1016/j.jallcom.2016.05.315

    Article  CAS  Google Scholar 

  16. S. C. Di, Y. P. Guo, H. W. Lv, et al., Ceram. Int. 41, 6178 (2015). https://doi.org/10.1016/j.ceramint.2014.12.134

    Article  CAS  Google Scholar 

  17. C. Yang, S. H. Cui, Z. C. Wu, et al., Tribol. Int. 160, 107018 (2021). https://doi.org/10.1016/j.triboint.2021.107018

    Article  CAS  Google Scholar 

  18. V. S. Rudnev, K. N. Kilin, T. P. Yarovaya, et al., Protect. Met. 44, 62 (2008). https://doi.org/10.1007/s11124-008-1008-8

    Article  CAS  Google Scholar 

  19. I. V. Malyshev and V. S. Rudnev, Protect. Met. Phys. Chem. Surf. 56, 369 (2020). https://doi.org/10.1134/S2070205120020161

    Article  CAS  Google Scholar 

  20. V. S. Rudnev, I. V. Malyshev, I. V. Lukiyanchuk, et al., Protect. Met. Phys. Chem. Surf. 48, 455 (2012).

    Article  CAS  Google Scholar 

  21. V. S. Rudnev, T. P. Yarovaya, P. M. Nedozorov, et al., Protect. Met. Phys. Chem. Surf. 47, 621 (2011). https://doi.org/10.1134/S2070205111050145

    Article  CAS  Google Scholar 

  22. I. G. Tarkhanova, A. A. Bryzhin, M. G. Gantman, et al., Surf. Coat. Technol. 362, 132 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.101

    Article  CAS  Google Scholar 

  23. V. V. Shtefan and A. Yu. Smirnova, Russ. J. Electrochem. 51, 1168 (2015). https://doi.org/10.1134/S1023193515120101

    Article  CAS  Google Scholar 

  24. X. Y. Liu, K. Wang, Y. Zhou, et al., J. Alloys Compd. 792, 644 (2019). https://doi.org/10.1016/j.jallcom.2019.04.057

    Article  CAS  Google Scholar 

  25. A. V. Epel’fel’d, P. N. Belkin, A. M. Borisov, et al., Modern Technologies for Modifying the Surface of Materials and Applying Protective Coatings, vol. 1 (Renome, Moscow, St.-Petersburg, 2017) [in Russian].

    Google Scholar 

  26. D. Guerrero-Araque, D. Ramírez-Ortega, P. Acevedo-Peña, et al., J. Photochem. Photobiol. A 335, 276 (2017). https://doi.org/10.1016/j.jphotochem.2016.11.030

    Article  CAS  Google Scholar 

  27. C. Q. Liu, X. Li, Y. T. Wu, et al., Ceram. Int. 45, 17163 (2019). https://doi.org/10.1016/j.ceramint.2019.05.271

    Article  CAS  Google Scholar 

  28. A. A. Volkov, T. B. Boitsova, V. M. Stozharov, et al., Russ. J. Gen. Chem. 90, 277 (2020). https://doi.org/10.1134/S1070363220020188

    Article  CAS  Google Scholar 

  29. H. Gao, B. Qiao, T. J. Wang, et al., Ind. Eng. Chem. Res. 53, 189 (2014). https://doi.org/10.1021/ie402539n

    Article  CAS  Google Scholar 

  30. I. V. Kolesnik, A. B. Shcherbakov, T. O. Kozlova, et al., Russ. J. Inorg. Chem. 65, 960 (2020). https://doi.org/10.1134/S0036023620070128

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed in the framework of the State assignment of the Institute of Chemistry, FEB RAS no. FWFN(0205)-2022-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Vasilyeva.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyeva, M.S., Lukiyanchuk, I.V., Shchitovskaya, E.V. et al. Plasma Electrolytic Formation and Photoelectrochemical Properties of Zr- and/or Ce-Containing Oxide Layers on Titanium. Russ. J. Inorg. Chem. 67, 1460–1464 (2022). https://doi.org/10.1134/S0036023622090182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622090182

Keywords:

Navigation