Skip to main content
Log in

Synthesis and Properties of Polymer Composites Based on Magnesium-Substituted Hydroxyapatite

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Magnesium-substituted hydroxyapatite Ca10 – xMgx(PO4)6(OH)2 (Mg-HA) has been synthesized from an aqueous solution of magnesium, calcium, diammonium phosphate, and ammonia salts in the presence of a polymer matrix of chitosan and chitin. The results of a study of the physicochemical properties of the synthesized composites are presented. The results of determining the composition, morphological, thermal, and bioactive characteristics of the obtained composites are presented. It has been found that all samples have a similar phase composition and morphology, which is characteristic of magnesium-substituted hydroxyapatite. It has been shown that the crystallite size of composites with chitosan decreases with an increase in the polymer content, while for composites with chitin there is an inverse relationship. It has been found that upon dissolution of samples in an isotonic solution, the rates of formation of calcium ions in the liquid phase increase with the content of chitosan and chitin in the synthesized composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. H. Gomoll, G. Filardo, L. de Girolamo, et al., Knee Surg. Sports Traumatol. Arthrosc. 20, 450 (2012).

    Article  CAS  Google Scholar 

  2. M. Supova, Ceram. Int. 9203 (2015). https://doi.org/10.1016/j.ceramint.2015.03.316

  3. T. Cordonnier, J. Sohier, P. Rosset, et al., Adv. Eng. Mater. 13, 135 (2011). https://doi.org/10.1002/adem.201080098

    Article  CAS  Google Scholar 

  4. Yu. S. Lukina, N. V. Sventskaya, and D. V. Andreev, Mezhd. Nauch. Issl. Zh. 4, 118 (2019).

    Google Scholar 

  5. A. F. Mavrogenis, R. Dimitriou, J. Parvizi, et al., J. Musculoskelet. Neuronal Interact. 9, 61 (2009).

    CAS  PubMed  Google Scholar 

  6. E. Kon, A. Roff, G. Filardo, et al., J. Arthrosc. Relat. Surg. 31, 767 (2015).

    Article  Google Scholar 

  7. L. Stipniece, S. Wilson, J. M. Curran, et al., Ceram. Int. 47, 3368 (2021). https://doi.org/10.1016/j.ceramint.2020.09.182

    Article  CAS  Google Scholar 

  8. T. V. Fadeeva and O. A. Golovanova, Russ. J. Inorg. Chem. 64, 690 (2019). https://doi.org/10.1134/S0036023619070064

    Article  Google Scholar 

  9. V. P. Orlovskii, Zh. A. Ezhova, G. V. Rodicheva, et al., Zh. Neorg. Khim. 37, 881 (1992).

    CAS  Google Scholar 

  10. V. K. Krut’ko, Vest. NAN Belarus, Ser. Khim. Navuk 4, 100 (2008).

    Google Scholar 

  11. P. Fratzl, H. Gupta, E. Paschalis, et al., J. Mater. Chem. 14, 2115 (2004).

    Article  CAS  Google Scholar 

  12. S. N. Danil’chenko, O. V. Kalinkevich, and M. V. Pogorelov, Ortoped. Travmatol. Protez. 1, 66 (2009).

    Google Scholar 

  13. A. N. Gurin, Cand. Sci. (Med.) Diss., Moscow, 2009.

  14. R. R. Izmailov, O. A. Golovanova, Y. V. Tserikh, et al., Russ. J. Inorg. Chem. 61, 817 (2016). https://doi.org/10.1134/S0036023616070081

    Article  CAS  Google Scholar 

  15. Z. F. Chen, B. W. Darvell, and V. W. Leung, Archives Oral Biol. 49, 359 (2004).

    Article  CAS  Google Scholar 

  16. M. Supova, Ceram. Int. 41, 9203 (2015).

    Article  CAS  Google Scholar 

  17. P. Li, Z. Jia, Q. Wang, et al., J. Mater. Chem. 6, 7427 (2018). https://doi.org/10.1039/C8TB01672K

    Article  CAS  Google Scholar 

  18. M. Pilmane, K. Salma-Ancane, D. Loca, et al., Mater. Sci. Eng. 78, 1222 (2017). https://doi.org/10.1016/j.msec.2017.05.042

    Article  CAS  Google Scholar 

  19. A. Ressler, M. Cvetni, M. Antunovi, et al., J. Biomed. Mater. Res. 108, 1697 (2020). https://doi.org/10.1002/jbm.b.34515

    Article  CAS  Google Scholar 

  20. S. Chen, Y. Shi, X. Zhang, et al., J. Biomed. Mater. Res. 107, 2512 (2019). https://doi.org/10.1002/jbm.a.36757

    Article  CAS  Google Scholar 

  21. A. Mocanua, Appl. Surf. Sci. 298, 225 (2014).

    Article  Google Scholar 

  22. V. M. Treushnikov and E. A. Viktorova, STM 7, 149 (2015).

    Google Scholar 

  23. A. V. Severin, V. N. Rudin, and M. E. Paul, Russ. J. Inorg. Chem. 65, 1436 (2020). https://doi.org/10.1134/S003602362009017X

    Article  CAS  Google Scholar 

  24. V. M. Sidel’nikova, Akusher. Ginekol. 6, 47 (2002).

    Google Scholar 

  25. V. E. Kamskaya, Biol. Nauki 6, 36 (2016).

    Google Scholar 

  26. A. A. Murav’ev, Cand. Sci. (Chem.) Diss., Moscow, 2017.

  27. K. D. Zhogolev, V. Yu. Nikitin, and V. N. Tsygan, Med. Immunologiya 2, 316 (2001).

    Google Scholar 

  28. E. N. Fedoseeva, L. A. Smirnova, and V. B. Fedoseev, Vestn. Nizhegor. Univ. 4, 59 (2008).

    Google Scholar 

  29. A. V. Lyasnikova, S. Ya. Pichkhidze, O. A. Dudareva, et al., Zh. Tekh. Fiz. 85, 152 (2015).

    Google Scholar 

  30. E. K. Vasil’ev, Qualitative X-ray Powder Diffraction Analysis (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  31. Chitin and Chitosan: Preparation, Properties, Application, Ed. by K. G. Skryabin, G. A. Vikhoreva, and V. P. Varlamov (Nauka, Moscow, 2020) [in Russian].

    Google Scholar 

  32. C. H. Danil’chenko, Vestnik SumDU, Ser. Fiz., Mat., Mekhan. 2, 33 (2007).

    Google Scholar 

  33. O. Frank-Kamenetskaya, A. Kol’tsov, M. Kuz’mina, et al., J. Mol. Struct. 992, 9 (2011).

    Article  CAS  Google Scholar 

  34. N. V. Bakunova, S. M. Barinov, V. S. Komlev, et al., Nauch. Vedom., Ser. Mat., Fiz. 23, 173 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Golovanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, A.I., Golovanova, O.A. Synthesis and Properties of Polymer Composites Based on Magnesium-Substituted Hydroxyapatite. Russ. J. Inorg. Chem. 67, 131–138 (2022). https://doi.org/10.1134/S0036023622020115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622020115

Keywords:

Navigation