Skip to main content
Log in

Phase Behavior and Ionic Conduction in the Composite Electrolytes CsH2PO4/SDP⋅2H2O

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Solid acid composite electrolytes CsH2PO4(CDP)/NaH2PO4(SDP)⋅2H2O were prepared and observed the structural, thermal and transport properties by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray analysis, differential scanning calorimetry, fourier transform infrared spectroscopy, and conductivity measurement. We have investigated superprotonic phase transition at 235°C in CDP, at which the conductivity increased up to 2 to 3 orders of magnitude. The initial dehydration event in CDP occurs at 250°C. The performance of CDP was increased due to the addition of SDP⋅2H2O in the form of stability. Thermal characterization showed that introducing the additivities, dehydration behavior shifted to the lower at the higher temperature. The conductivity is increased above the temperature of 170°C which was found of the composite electrolytes 70CDP/30SDP⋅2H2O, 60CDP/40SDP⋅2H2O. The electrodes were prepared by a vacuum coating unit of silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Xiao, R. Wang, Z. Chang, et al., Prog. Nat. Sci. Mater. Int. 30, 743 (2020). https://doi.org/10.1016/j.pnsc.2020.08.014

    Article  CAS  Google Scholar 

  2. J. M. Pringle, P. C. Howlett, D. R. MacFarlane, et al., J. Mater. Chem. 20, 2056 (2010). https://doi.org/10.1039/b920406g

    Article  CAS  Google Scholar 

  3. T. L. Simonenko, N. P. Simonenko, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 66, 662 (2021). https://doi.org/10.1134/S0036023621050193

    Article  CAS  Google Scholar 

  4. S. Yoshimi, T. Matsui, R. Kikuchi, and K. Eguchi, J. Power Sources 179, 497 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.003

    Article  CAS  Google Scholar 

  5. Y. Yamane, K. Yamada, and K. Inoue, Solid State Ionics 179, 483 (2008). https://doi.org/10.1016/j.ssi.2008.03.031

    Article  CAS  Google Scholar 

  6. V. G. Ponomareva, I.N. Bagryantseva, Solid State Ionics 329, 90 (2019). https://doi.org/10.1016/j.ssi.2018.11.021

    Article  CAS  Google Scholar 

  7. D. A. Boysen and S. M. Haile, Chem. Mater. 15, 727 (2003). https://doi.org/10.1021/cm020138b

    Article  CAS  Google Scholar 

  8. T. Uda and S. M. Haile, Electrochem. Solid-State Lett. 8, 245 (2005). https://doi.org/10.1149/1.1883874

    Article  CAS  Google Scholar 

  9. M. R. Osafi, A. Bakhshi Ani, and M. Kalbasi, Int. J. Heat. Mass. Transf. 129, 1086 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.049

    Article  CAS  Google Scholar 

  10. D. A. Boysen, T. Uda, C. R. I. Chisholm, et al., Science 303, 68 (2004). https://doi.org/10.1126/science.1090920

    Article  CAS  PubMed  Google Scholar 

  11. I. N. Bagryantseva, V. G. Ponomareva, N. P. Lazareva, Solid State Ionics 329, 61 (2019). https://doi.org/10.1016/j.ssi.2018.11.010

    Article  CAS  Google Scholar 

  12. Y. Taninouchi, T. Uda, Y. Awakura, et al., J. Mater. Chem. 17, 31829 (2007). https://doi.org/10.1039/b704558c

    Article  CAS  Google Scholar 

  13. G. Qing, R. Kikuchi, A. Takagaki, et al., Electrochim. Acta. 169, 219 (2015). https://doi.org/10.1016/j.electacta.2015.04.089

    Article  CAS  Google Scholar 

  14. T. Matsui, T. Kukino, R. Kikuchi, and K. Eguchi, Electrochem. Solid-State Lett. 8, 256 (2006). https://doi.org/10.1149/1.1883906

    Article  CAS  Google Scholar 

  15. V. G. Ponomareva and E. S. Shutova, Solid State Ionics, 178, 729 (2007). https://doi.org/10.1016/j.ssi.2007.02.035

    Article  CAS  Google Scholar 

  16. T. Matsui, H. Muroyama, R. Kikuchi, and K. Eguchi, J. Japan Petroleum Inst. 53, 1 (2010). https://doi.org/10.1627/jpi.53.1

    Article  CAS  Google Scholar 

  17. D. Singh, P. Kumar, J. Singh, et al., SN Appl. Sci. 3, 46 (2021). https://doi.org/10.1007/s42452-020-04097-9

    Article  CAS  Google Scholar 

  18. T. Anfimova, A.H. Jensen, E. Christensen, et al., J. Electrochem. Soc. 162, F436 (2015). https://doi.org/10.1149/2.0671504jes

    Article  CAS  Google Scholar 

  19. D. Singh, J. Singh, P. Kumar, et al., South African J. Chem. Eng. 37, 227 (2021). https://doi.org/10.1016/j.sajce.2021.06.006

    Article  Google Scholar 

  20. J. Hyodo, K. Kitabayashi, K. Hoshino, et al., Adv. Energy Mater. 10, 3(2020). https://doi.org/10.1002/aenm.202000213

    Article  CAS  Google Scholar 

  21. T. Rhimi, G. Leroy, B. Duponchel, et al., Ionics (Kiel) 24, 3507 (2018). https://doi.org/10.1007/s11581-018-2494-6

    Article  CAS  Google Scholar 

  22. X. Zhang, C. Liu, W. Shen, et al., J. Chem. Thermodyn. 90, 185 (2015). https://doi.org/10.1016/j.jct.2015.06.038

    Article  CAS  Google Scholar 

  23. X. Zhang, Y. Ren, W. Ma, et al., J. Chem. Thermodyn. 77, 107 (2014). https://doi.org/10.1016/j.jct.2014.05.011

    Article  CAS  Google Scholar 

  24. N. Mohammad, A. B. Mohammad, A. A. H. Kadhum, et al., J. Alloys Comp. 690, 896 (2017). https://doi.org/10.1016/j.jallcom.2016.08.188

    Article  CAS  Google Scholar 

  25. A. Ghule, R. Murugan, H. Chang, Inorg Chem. 40, 5917 (2001). https://doi.org/10.1021/ic010043w

    Article  CAS  PubMed  Google Scholar 

  26. J. Otomo, N. Minagawa, C.J. Wen, et al., Solid State Ionics 156, 357 (2003). https://doi.org/10.1016/S0167-2738(02)00746-4

    Article  CAS  Google Scholar 

  27. S. Chen, Y. Yin, D. Wang, et al., J. Crystal Growth 282, 498 (2005). https://doi.org/10.1016/j.jcrysgro.2005.05.017

    Article  CAS  Google Scholar 

  28. S. Hosseini, W.R. Wan Daud, M. Badiei, et al., Bull. Materials Sci. 34, 759 (2011). https://doi.org/10.1007/s12034-011-0192-3

    Article  CAS  Google Scholar 

  29. V. I. Pet’kov, A. I. Bokov, E. A. Asabina, et al., Russ J. Inorg Chem. 66, 799 (2021). https://doi.org/10.1134/S0036023621060152

    Article  Google Scholar 

  30. S. Hosseini, A. B. Mohamad, A. H. KaHum, et al., J. Therm. Anal. Calorim. 99, 197 (2010). https://doi.org/10.1007/s10973-009-0132-21

    Article  CAS  Google Scholar 

  31. A. Matsuda, T. Kanzaki, Y. Kotani, et al., Solid State Ionics 139, 113 (2001). https://doi.org/10.1016/S0167-2738(00)00819-5

    Article  CAS  Google Scholar 

  32. E. Ortiz, R. A. Vargas, and B. E. Mellander, J. Chem. Phys. 110, 4847 (1999). https://doi.org/10.1063/1.478371

    Article  CAS  Google Scholar 

  33. V. G. Ponomareva and G. V. Lavrova, Solid State Ionics. 304, 90 (2017). https://doi.org/10.1016/j.ssi.2017.03.026

    Article  CAS  Google Scholar 

  34. N. S. Saetova, A. A. Raskovalov, E. A. Il’ina, et al., Russ. J. Inorg. Chem. 66, 313 (2021). https://doi.org/10.1134/S003602362103013X

    Article  CAS  Google Scholar 

  35. C. E. Botez, I. Martinez, A. Price, et al., J. Phys. Chem. Solids 129, 324 (2019). https://doi.org/10.1016/j.jpcs.2019.02.001

    Article  CAS  Google Scholar 

  36. A. H. Jensen, Q. Li, E. Christensen, and N. J. Bjerrum, J. Electrochem. Soc. 16, 72 (2014). https://doi.org/10.1149/2.063401jes

    Article  CAS  Google Scholar 

  37. S. P. Dolin, T. Y. Mikhailova, and N. N. Breslavskaya, Russ. J. Inorg. Chem. 65, 76 (2020). https://doi.org/10.1134/S0036023620010076

    Article  CAS  Google Scholar 

  38. J. H. Leal, H. Martinez, I. Martinez, et al., Mater. Today Commun. 15, 11 (2018). https://doi.org/10.1016/j.mtcomm.2018.02.021

    Article  CAS  Google Scholar 

  39. A. A. Gaydamaka, V. G. Ponomareva, and I. N. Bagryantseva, Solid State Ionics 329, 124 (2019). https://doi.org/10.1016/j.ssi.2018.12.005

    Article  CAS  Google Scholar 

  40. V. V. Martsinkevich and V. G. Ponomareva, Solid State Ionics 225, 236 (2012). https://doi.org/10.1016/j.ssi.2012.04.016

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author gratefully thanks Material Science Research Laboratory, Department of Physics, Gurukula Kangri (Deemed to be University) Haridwar, Uttarakhand, India to provide research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kumar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veer, D., Kumar, P., Singh, D. et al. Phase Behavior and Ionic Conduction in the Composite Electrolytes CsH2PO4/SDP⋅2H2O. Russ. J. Inorg. Chem. 66, 2059–2067 (2021). https://doi.org/10.1134/S003602362114014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362114014X

Keywords:

Navigation