Skip to main content
Log in

Efficient Process of ALD CuO and Its Application in Photocatalytic H2 Evolution

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

As a cost-effective material, CuO has been widely used in many emerging fields. The synthesis method plays a key role in the performance of the material. Atomic layer deposition (ALD) has been developed as a precise technique to deposit materials with great control at atomic scale. Herein, an efficient process of ALD CuO is reported by using [Cu(sBu-amd)]2 and O3 as precursors. CuO films can be deposited on SiO2 substrates with typical self-limiting growth behaviors at 120–220°C. Notably, the growth rate of the CuO films is reach up to 2.5 Å/cycle, which is 6~12 times more than the available value. This remarkably high efficiency is the critical factor to promote the large-scale applications of ALD CuO materials. Furthermore, CuO is deposited on TiO2 nano-particles (forming CuO/TiO2 composite) using this ALD process to evaluate its performance for H2 evolution. The 0.37 wt % CuO/TiO2 composite (120 cycles CuO/TiO2) can achieve a H2 evolution rate of 3995 μmol g–1 h–1, which is nearly 200 times larger than pure TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. O. Ansari, R. Kumar, A. Alshahrie, et al., Compos. Part. B Eng. 175, 107092 (2012). https://doi.org/10.1016/j.compositesb.2019.107092

    Article  CAS  Google Scholar 

  2. Y. X. Zhao, J. X. Chen, W. Cai, et al., Chem. Phys. Lett. 625, 66 (2019). https://doi.org/10.1016/j.cplett.2019.04.010

    Article  CAS  Google Scholar 

  3. T. Nishi, S. Sato, T. Arai, et al., ACS Appl. Energy Mater. 3, 8383 (2020). https://doi.org/10.1021/acsaem.0c01014

    Article  CAS  Google Scholar 

  4. Y. X. Wang, W. Zhou, R. R. Jia, et al., Angew. Chem. Int. Ed. 59, 5350 (2020). https://doi.org/10.1002/anie.201915992

    Article  CAS  Google Scholar 

  5. O. Sismana, D. Zappaa, E. Bollib, et al., Sens. Actuators B Chem. 321, 128579 (2020). https://doi.org/10.1016/j.snb.2020.128579

    Article  CAS  Google Scholar 

  6. J. Hellsvik, J. H. Mentink, and J. Lorenzana, Phys. Rev. B 94, 144435 (2016). https://doi.org/10.1103/physrevb.94.144435

    Article  Google Scholar 

  7. M. W. Kadia, R. M. Mohameda, and A. A. Ismail, Ceram. Int. 46, 8819 (2020). https://doi.org/10.1016/j.ceramint.2019.12.124

    Article  CAS  Google Scholar 

  8. Q. Q. Shi, G. C. Ping, X. J. Wang, et al., J. Mater. Chem. A 7, 2253 (2019). https://doi.org/10.1039/C8TA09439J

    Article  CAS  Google Scholar 

  9. T. N. Ravishankar, M. de O. Vaz, and S. R. Teixeira, New. J. Chem. 44, 1888 (2020). https://doi.org/10.1039/C9NJ05246A

    Article  CAS  Google Scholar 

  10. B. W. Wang, Q. M. Sun, S. H. Liu, et al., Int. J. Hydrog. Energy 38, 7232 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.038

    Article  CAS  Google Scholar 

  11. Y. P. Li, Z. Y. Hu, S. H. Liu, S et al., React. Kinet. Mech. Catal. 112, 559 (2014). https://doi.org/10.1007/s11144-014-0704-4

    Article  CAS  Google Scholar 

  12. V. B. Aleskovsky, A. N. Volkova, S. I. Koltsov, and A. A. Malygin, Russ. J. Inorg. Chem. 20, 2695 (1975).

    Google Scholar 

  13. Zh. N. Ishutina, V. V. Gusarov, A. A. Malkov, et al., Russ. J. Inorg. Chem. 44, 16 (1999).

    CAS  Google Scholar 

  14. S. I. Kol’tsov and V. B. Aleskovskii, Russ. J. Phys. Chem. 42, 630 (1968).

    Google Scholar 

  15. S. M. George, Chem. Rev. 110, 111 (2010). https://doi.org/10.1021/cr900056b

    Article  CAS  PubMed  Google Scholar 

  16. M. Leskela and M. Ritala, Thin Solid Films 409, 138 (2002). https://doi.org/10.1016/S0040-6090(02)00117-7

    Article  CAS  Google Scholar 

  17. R. W. Johnson, A. Hultqvist, and S. F. Bent, Mater. Today 17, 236 (2014). https://doi.org/10.1016/j.mattod.2014.04.026

    Article  CAS  Google Scholar 

  18. L. Y. Du, W. Huang, Y. X. Zhang, et al., Chem. Comm. 55, 1943 (2019). https://doi.org/10.1039/C8CC10175B

    Article  PubMed  Google Scholar 

  19. T. Iivonen, H. B. Marchand, K. M. Mattinen, and G. P. Kim, J. Vac. Sci. Technol. A 34, 01A109 (2016). https://doi.org/10.1116/1.4933089

  20. A. Tamm, A. Tarre, V. Verchenko, et al., Crystals 10, 650 (2020). https://doi.org/10.3390/cryst10080650

    Article  CAS  Google Scholar 

  21. J. R. Avila, C. R. Eddy, and V. D. Wheeler, J. Vac. Sci. Technol. A 38, 042403 (2020). https://doi.org/10.1116/6.0000248

    Article  CAS  Google Scholar 

  22. J. D. Kwona, S. H. Kwonb, T. H. Jungc, et al., Appl. Surf. Sci. 285, 373 (2013). https://doi.org/10.1016/j.apsusc.2013.08.063

    Article  CAS  Google Scholar 

  23. W. Maeng, S. H. Lee, J. D. Kwon, et al., Ceram. Int. 42, 5517 (2016). https://doi.org/10.1016/j.ceramint.2015.12.109

    Article  CAS  Google Scholar 

  24. T. S. Tripathi, I. Terasaki, and M. Karppinen, J. Phys. Condens. Matter. 28, 475801 (2016). https://doi.org/10.1088/0953-8984/28/47/475801

    Article  CAS  PubMed  Google Scholar 

  25. L. Y. Du, K. Y. Wang, Y. P. Zhong, et al., J. Mater. Sci. 55, 5378 (2020). https://doi.org/10.1007/s10853-020-04380-5

    Article  CAS  Google Scholar 

  26. Q. Ma, H. Guo, R. G. Gordon, and F. Zaera, Chem. Mater. 23, 3325 (2011). https://doi.org/10.1021/cm200432t

    Article  CAS  Google Scholar 

  27. Z. W. Li, A. Rahtu, and R. G. Gordon, J. Electrochem. Soc. 153, C787 (2006). https://doi.org/10.1149/1.2338632

    Article  CAS  Google Scholar 

  28. Y. H. Hu, Y. L. Yang, R. Q. Fan, et al., Appl. Organomet. Chem. 33, 5060 (2019). https://doi.org/10.1002/aoc.5060

    Article  CAS  Google Scholar 

  29. D. Barreca, G.o Carraro, and A. Gasparotto, Surf. Sci. Spectra 16, 1 (2009). https://doi.org/10.1116/11.20110101

    Article  CAS  Google Scholar 

  30. F. J. Chen, P. L. Ho, R. R, W. M. Chen, et al., J. Alloys. Comp. 714, 560 (2017). https://doi.org/10.1016/j.jallcom.2017.04.138

    Article  CAS  Google Scholar 

  31. T. Iivonen, J. H. Marchand, K. M. Mattinen, et al. Sci. Technol. A 34, 01A109 (2016). https://doi.org/10.1116/1.4933089

  32. T. H. Yu, Y. P. Chen, and Z. D. Cheng, Int. J. Hydrog. Energy 40, 15994 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.115

    Article  CAS  Google Scholar 

  33. N. L. Reddy, S. Emin, V. D. Kumari, and S. M. Venkatakrishnan, Ind. Eng. Chem. Res. 57, 568 (2017). https://doi.org/10.1021/acs.iecr.7b03785

    Article  CAS  Google Scholar 

  34. P. Khemthong, P. Photai, and N. Grisdanurak, Int. J. Hydrog. Energy 38, 15992 (2013). https://doi.org/10.1016/j.ijhydene.2013.10.065

    Article  CAS  Google Scholar 

  35. S. Xu and D. D. Sun, Int. J. Hydrog. Energy 34, 6096 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.119

    Article  CAS  Google Scholar 

  36. V. Gombac, L. Sordelli, T. Montini, et al., J. Phys. Chem. A 114, 3916 (2010). https://doi.org/10.1021/jp907242q

    Article  CAS  PubMed  Google Scholar 

  37. Z. M. Yu, J. L. Meng, Y. Li, and Y. D. Li, Int. J. Hydrog. Energy 38, 16649 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.056

    Article  CAS  Google Scholar 

  38. Y. L. Wang, M. Zhou, Y. X. He, et al., J. Alloys Compd. 813, 152184 (2019). https://doi.org/10.1016/j.jallcom.2019.152184

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge financial support for this work from the Natural Science Foundation of Jiangsu Province (no. BK20190602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Ding.

Ethics declarations

The authors declare no competing financial interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongmei He, Du, L., Wang, K. et al. Efficient Process of ALD CuO and Its Application in Photocatalytic H2 Evolution. Russ. J. Inorg. Chem. 66, 1986–1994 (2021). https://doi.org/10.1134/S0036023621130040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621130040

Keywords:

Navigation