Skip to main content
Log in

Features of Sorption Preconcentration of Noble Metal Ions with Sulfoethylated Amino Polymers

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Dependencies for the sorption of palladium(II), gold(III), and platinum(IV) chloro complexes from individual and binary solutions with sorbents based on sulfoethylated polyallylamine and poly(aminostyrene) have been obtained. It has been found that predominant sorption mechanism is complexation with functional groups of the sorbents for gold(III) and palladium(II) and ion exchange for platinum(IV). It has been shown that increase in the sulfoethylation degree of aminopolymer matrix leads to decrease of platinum(IV) sorption and therefore, to increase in palladium(II) sorption selectivity relative to this ion. This effect is the largest for the sorbents based on polyallylamine. The conditions of quantitative desorption of the studied metals from sorbent surface have been determined. The sorption of gold(III) by the sorbent based on polyallylamine has been shown to be complicated by gold(III) reduction in sorbent phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Karpov, V. B. Baranovskaya, and L. P. Zhitenko, Analytical Monitoring of Noble Metals (Tekhnosfera, Moscow, 2019) [in Russian].

    Google Scholar 

  2. O. N. Kononova, E. V. Duba, D. V. Medovikov, et al., Russ. J. Phys. Chem. 92, 2053 (2018). https://doi.org/10.1134/S0036024418100138

    Article  CAS  Google Scholar 

  3. J. Lee and HongaH. J. Kurniawana, et al., Sep. Purif. Technol. 246, 116896 (2020). https://doi.org/10.1016/j.seppur.2020.116896

    Article  CAS  Google Scholar 

  4. N. D. Abovskii, A. A. Blokhin, Yu. V. Murashkin, et al., Sorbtsionnye Khromatogr. Protsessy 7, 264 (2007).

    Google Scholar 

  5. L. N. Adeeva and A.V. Mironov, Vestn. Tomsk. Gos. Univ., Khim. No. 4, 128 (2013).

    Google Scholar 

  6. A. V. Pestov, S. Yu. Bratskaya, A. B. Slobodyuk, et al., Russ. Chem. Bull. 59, 1303 (2010). https://doi.org/10.1007/s11172-010-0238-5

  7. F. B. Biswas, I. M. M. Rahman, K. Nakakubo, et al., Chem. Eng. J. 407, 127225 (2020). https://doi.org/10.1016/j.cej.2020.127225

    Article  CAS  Google Scholar 

  8. L. K. Neudachina, A. S. Kholmogorova, I. S. Puzyrev et al., Russ. J. Phys. Chem. 92, 2309 (2018). https://doi.org/10.1134/S0036024418110304

    Article  CAS  Google Scholar 

  9. V. N. Losev, E. V. Borodina, O. V. Buiko, et al., Zh. Anal. Khim. 69, 462 (2014).

    Google Scholar 

  10. Q. Xie, T. Lin, F. Chen, et al., Hydrometallurgy 178, 188 (2018). https://doi.org/10.1016/j.hydromet.2018.04.007

    Article  CAS  Google Scholar 

  11. A. N. Nikoloski, K.-L. Ang, and D. Li, Hydrometallurgy 152, 20 (2015). https://doi.org/10.1016/j.hydromet.2014.12.006

    Article  CAS  Google Scholar 

  12. L. M. k. Alifkhanova, Yu. S. Petrova, S. N. Bosenko, et al., Russ. J. Inorg. Chem. 66, 578 (2021). https://doi.org/10.1134/S0036023621040033

  13. K. Fujiwara, A. Ramesh, T. Maki, et al., J. Hazard. Mat. 146, 39 (2007). https://doi.org/10.1016/j.jhazmat.2006.11.049

    Article  CAS  Google Scholar 

  14. F. Liu, S. Wang, and S. Chen, Int. J. Biol. Macromol. 152, 1242 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.221

    Article  CAS  PubMed  Google Scholar 

  15. W. Wei, D. H. K. Reddy, J. K. Bediako, et al., Chem. Eng. J. 289, 413 (2016). https://doi.org/10.1016/j.cej.2015.12.104

    Article  CAS  Google Scholar 

  16. Y. S. Petrova, A. V. Pestov, M. K. Usoltseva, et al., Sep. Sci. Technol. 54, 42 (2019). https://doi.org/10.1080/01496395.2018.1505912

    Article  CAS  Google Scholar 

  17. L. M. k. Alifkhanova, A. V. Pestov, A. V. Mekhaev, et al., J. Environ. Chem. Eng. 7, 102846 (2019). https://doi.org/10.1016/j.jece.2018.102846

    Article  CAS  Google Scholar 

  18. L. M. k. Alifkhanova, K. Ya. Lopunova, A. V. Pestov, et al., Sep. Sci. Technol. 55, (2020) (in press). https://doi.org/10.1080/01496395.2020.1781175

  19. M. Markhol, Ion Exchangers in Analytical Chemistry (Mir, Moscow, 1985) [in Russian].

  20. Yu. A. Kokotov, Equilibrium and Kinetics of Ion Exchange (Khimiya, Leningrad, 1970) [in Russian].

    Google Scholar 

  21. N. N. Basargin, E. R. Ostrovskaya, E. Yu. Yushkova, et al., Zh. Fiz. Khim. 80, 127 (2006).

    Google Scholar 

  22. J. Suh, Bioorg. Chem. 22, 318 (1994). https://doi.org/10.1006/bioo.1994.1025

    Article  CAS  Google Scholar 

  23. T. H. Bui, W. Lee, S.-B. Jeon, et al., Sep. Purif. Technol. 248, (2020). https://doi.org/10.1016/j.seppur.2020.116989

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-33-90081) and the Government of the Russian Federation (Decree No. 21, Contract no. 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. k. Alifkhanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alifkhanova, L.M., Lopunova, K.Y., Marchuk, A.A. et al. Features of Sorption Preconcentration of Noble Metal Ions with Sulfoethylated Amino Polymers. Russ. J. Inorg. Chem. 66, 909–915 (2021). https://doi.org/10.1134/S0036023621060024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621060024

Keywords:

Navigation