Skip to main content
Log in

Sorption Selectivity of Palladium(II) by Poly(N-2-Sulfoethylallylamine) under Static and Dynamic Conditions

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The process of Pd(II) sorption from hydrochloric acid solutions was studied in the pH range of 0.5–5.0 in the presence of Pt(IV) and a number of non-noble metal ions by poly(N-2-sulfoethylallylamine) (degrees of modification by sulfoethyl groups of 0.5 and 1.0) crosslinked with epichlorohydrin. It is shown that the degree of extraction of Pd(II) from multicomponent solutions containing transition metal ions Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Mg(II), Pt( IV) is the largest. The selectivity coefficients of KPd(II)/Pt(IV) increase with an increase in the content of sulfoethyl groups in the aminopolymer and an increase in pH, which indicates that the Pd(II) sorption proceeds predominantly via the complex formation mechanism. It was found that the sorption equilibrium in the systems metal salt solution–sorbent is achieved within 240 and 120 min of phase contact for poly(N-2-sulfoethylallylamines) with modification degrees of 0.5 and 1.0, respectively. Under dynamic conditions, the studied sorbent, along with Pd(II), to a large extent extracts accompanying metal ions, which indicates a significant contribution of ion exchange to the mechanism of the sorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Pestov, A.V., Privar, Yu.O., Mekhaev, A.V., Fedorets, A.N., Ezhikova, M.A., Kodess, M.I., and Bratskaya, S.Yu., Eur. Polym.J., 2019, vol. 115, pp. 356–363. https://doi.org/10.1016/j.eurpolymj.2019.03.049

    Article  CAS  Google Scholar 

  2. Bratskaya, S., Privar Yu., Ustinov, A., Azarova Yu., and Pestov, A., Ind. Eng. Chem. Res., 2016, vol. 55, no. 39, pp. 10377–10385. https://doi.org/10.1021/acs.iecr.6b01376

    Article  CAS  Google Scholar 

  3. Lee, J., Kurniawan, Hong, H., Chung, K.W., and Sookyung, K., Sep. Purif. Technol., 2020, vol. 246, ID 116896. https://doi.org/10.1016/j.seppur.2020.116896

    Article  CAS  Google Scholar 

  4. Alifkhanova, L.M.k., Kuznetsova K.Ya., Marchuk, A.A., Petrova Yu.S., Pestov, A.V., and Neudachina, L.K.., Russ. J. Inorg. Chem., 2021, vol. 66, no. 6. P. 909–915. https://doi.org/10.31857/S0044457X21060027 

    Article  Google Scholar 

  5. Alifkhanova, L.M.k., Lopunova K.Ya., Pestov, A.V., Zemlyakova, E.O., Kondratovich, O.V., Petrova, Yu.S., and Neudachina, L.K., Sep. Sci. Technol., 2021, vol. 56, no. 8, pp. 1303–1311. https://doi.org/10.1080/01496395.2020.1781175

    Article  CAS  Google Scholar 

  6. Marhol, M., Ion Exchangers in Analytical Chemistry, Prague, 1982.

    Google Scholar 

  7. Gandhi, M.R., Yamada, M., Kondo, Y., Shibayama, A., and Hamada, F., J. Ind. Eng. Chem., 2015, vol. 30, pp. 20–28. https://doi.org/10.1016/j.jiec.2015.04.024

    Article  CAS  Google Scholar 

  8. Nikoloski, A.N., Ang, K.L., and Li, D., Hydrometallurgy, 2015, vol. 152, pp. 20–32. https://doi.org/10.1016/j.hydromet.2014.12.006

    Article  CAS  Google Scholar 

  9. Miroshnichenko, A.A., Procedia Eng., 2016, vol. 152, pp. 8–12. https://doi.org/10.1016/j.proeng.2016.07.607

    Article  CAS  Google Scholar 

  10. Kononova, O.N., Duba, E.V., Shnaider, N.I., and Pozdnyakov, I.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 8, pp. 1239–1245. https://doi.org/10.1134/S1070427217080080 

    Article  CAS  Google Scholar 

  11. Pinto, J., Lopes, C.B., Henriques, B., Couto, A.F., Ferreira, N., Carvalho, L., Costa, M., Torres, J.M.P., Vale, C., and Pereira, E., J. Environ. Chem. Eng., 2021, vol. 9. ID 105100. https://doi.org/10.1016/j.jece.2021.105100

    Article  Google Scholar 

  12. Ramakul, P., Yanachawakul, Y., Leepipatpiboon, N., and Sunsandee, N., Chem. Eng.J., 2012, vol. 193–194, pp. 102–111. https://doi.org/10.1016/j.cej.2012.04.035

    Article  CAS  Google Scholar 

  13. Petrova, Yu.S., Pestov, A.V., Usoltseva, M.K., Kapitanova, E.I., and Neudachina, L.K., Sep. Sci. Technol., 2019, vol. 54. N 1, pp. 42–50. https://doi.org/10.1080/01496395.2018.1505912

    Article  CAS  Google Scholar 

  14. Asere, T.G., Mincke, S., Folens, K., Bussche, F.V., Lapeire, L., Verbeken, K., Voort, P.V.D., Tessema, D.A., Laing, G.D., and Stevens, C.V., React. Funct. Polym., 2019, vol. 141, pp. 145–154. https://doi.org/10.1016/j.reactfunctpolym.2019.05.008

    Article  CAS  Google Scholar 

  15. Chassary, P., Thierry, V., Marcano, J.S., Macaskie, L.E., and Guibal, E., Hydrometallurgy, 2005, vol. 76, pp. 131–147. https://doi.org/10.1016/j.hydromet.2004.10.004

    Article  CAS  Google Scholar 

  16. Guibal, E., Sweeney, N.V.O., Zikan, M.C., Vincent, T., and Tobin, J.M., Int. J. Biol. Macromol., 2001, vol. 28, pp. 401–408. https://doi.org/10.1016/s0141-8130(01)00130-1

    Article  CAS  PubMed  Google Scholar 

  17. Ricoux, Q., Bocokic, V., Mericq, J.P., Bouyer, D., Zutphen, S.V., and Faur, C., Chem. Eng.J., 2015, vol. 264, pp. 772–779. https://doi.org/10.1016/j.cej.2014.11.139

    Article  CAS  Google Scholar 

  18. Prozorova, G., Kuznetsova, N., Shaulina, L., Bolgova, Yu., Trofimova, O., Emel’yanov, A., and Pozdnyakov, A., J. Organomet. Chem., 2020, vol. 916. ID 121273. https://doi.org/10.1016/j.jorganchem.2020.121273

    Article  Google Scholar 

  19. Rasoulzadeh, H., Sheikhmohammadi, A., Abtah, M., Roshan, B., and Jokar, R., J. Environ. Chem. Eng., 2021, vol. 9, ID 105954. https://doi.org/10.1016/j.jece.2021.105954

    Article  CAS  Google Scholar 

  20. Wang, Z., Kang, S.B., and Won, S.W., J. Environ. Chem. Eng., 2021, vol. 9. ID 105058. https://doi.org/10.1016/j.jece.2021.105058

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ruiz, M., Sastre, A.M., and Guibal, E., React. Funct. Polym., 2000, vol. 45, pp. 155–173. https://doi.org/10.1016/S1381-5148(00)00019-5

    Article  CAS  Google Scholar 

  22. Ho, Y.S. and McKay, G., Process Biochem., 1999, vol. 34, no. 5, pp. 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  23. Ho, Y.S., Ng, J.C.Y., and McKay, G., Sep. Purific. Methods, 2000, vol. 29, no. 2, pp. 189–232. https://doi.org/10.1081/SPM-100100009

    Article  CAS  Google Scholar 

  24. Ozacar, M. and Sengil, I.A., Process Biochem., 2005, vol. 40, no. 2, pp. 565–572. https://doi.org/10.1016/j.procbio.2004.01.032

    Article  CAS  Google Scholar 

  25. Petrukhin, O.M., Myasoedova, G.V., and Malofeeva, G.I., Khimicheskie metody razdeleniya i kontsentrirovaniya (Chemical Methods of Separation and Concentration), Moscow: KomKniga, 2005.

    Google Scholar 

Download references

Funding

The study was supported by the grant of the Russian Science Foundation (Russian Science Foundation) no. 21-73-00052, https://rscf.ru/project/21-73-00052/.

Author information

Authors and Affiliations

Authors

Contributions

L.M.k. Alifkhanova: a study of the sorption selectivity of noble metal ions by sulfoethylated polyallyamine under static conditions; K.Ya. Kuznetsova: a study of the sorption selectivity of noble metal ions by sulfoethylated polyallyamine under dynamic conditions; L.K. Neudachina and Yu.S. Petrova: researching the sorption kinetics of metal ions by the studied sorbents and carrying out mathematical processing of kinetic curves; E.O. Zemlyakova and A.V. Pestov: synthesis of the studied sorbents.

Corresponding author

Correspondence to L. M. k. Alifkhanova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 399–408, March, 2022 https://doi.org/10.31857/S0044461822030136

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alifkhanova, L.M.k., Petrova, Y.S., Kuznetsova, K.Y. et al. Sorption Selectivity of Palladium(II) by Poly(N-2-Sulfoethylallylamine) under Static and Dynamic Conditions. Russ J Appl Chem 95, 451–459 (2022). https://doi.org/10.1134/S1070427222030168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222030168

Keywords:

Navigation