Skip to main content
Log in

Possibilities of a Simplified Approach to Studying the Features of Structural Phase Transitions in H-Bonded Ferroelectrics with the use of Ab Initio Calculations

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Using the К(Н/D)2РО4 ferroelectrics as an example, a simplified quantum-chemical approach to the description of the structural phase transition driven by an increase in the number of H/D-bonds in model clusters has been proposed and substantiated. In this case, the simplified description takes into account only pseudospin configurations obeying the ice rule in the phase transition statistics. Calculations of various model systems have been used to test the efficiency of using an economical method for determining the Ising and Slater constants. The key results have been obtained within the framework of the standard Bethe approximation for trimeric clusters of two types (linear and corner), which differ significantly in symmetry from the lattice in various simulations of terminal H-bonds. There have been analyzed the advantages and disadvantages of the proposed approach for describing the transition thermodynamics and for the possibility of trial modeling of the structure of inhomogeneities associated with domain walls and their boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Levin and S. P. Dolin, J. Mol. Struct. 552, 39 (2000). https://doi.org/10.1016/S0022-2860(00)00457-9

    Article  CAS  Google Scholar 

  2. S. P. Dolin, T. Yu. Mikhailova, N. N. Breslavskaya, et al., Int. J. Quantum Chem. 116, 202 (2016). https://doi.org/10.1002/qua.25037

    Article  CAS  Google Scholar 

  3. S. P Dolin, T. Yu. Mikhailova, and N. N. Breslavskaya, Russ. J. Phys. Chem. A 88, 1872 (2014). https://doi.org/10.1134/S0036024414110065

  4. A. A. Levin, S. P. Dolin, AND T. Yu. Mikhailova, Ros. Khim. Zhurn. 51, 139 (2007).

  5. S. P. Dolin, T. Yu. Mikhailova, and N. N. Breslavskaya, Russ. J. Inorg. Chem. 65, 540 (2020). https://doi.org/10.1134/S0036023620040221

    Article  CAS  Google Scholar 

  6. S. P. Dolin, T. Yu. Mikhailova, and N. N. Breslavskaya, Rus. J. Inorg. Chem. 65, 1015 (2020). https://doi.org/10.1134/S0036023620070050

    Article  CAS  Google Scholar 

  7. S. P. Dolin, I. S. Flyagina, et al., Int. J. Quantum Chem. 107, 2409 (2007). https://doi.org/10.1002/qua.21406

    Article  CAS  Google Scholar 

  8. R. J. Nelmes, Z. Tun, and W. F. Kuhs, Ferroelectrics 71, 125 (1987). https://doi.org/10.1080/00150198708224833

    Article  CAS  Google Scholar 

  9. V. Ya. Shur, A. R. Akhmatkhanov, A. I. Lobov, and A. P. Turygin, J. Adv. Dielectr. 5, 1550015 (2015). https://doi.org/10.1142/S2010135X15500150

    Article  CAS  Google Scholar 

  10. Y. Ishibashi, Ferroelectrics 98, 193 (1989).

    Article  Google Scholar 

  11. A. A. Bullbich and Yu. M. Gufan, Ferroelectrics 98, 277 (1989).

    Article  Google Scholar 

  12. N. A. Pertsev and G. Arlt, Ferroelectrics 132, 27 (1992).

    Article  CAS  Google Scholar 

  13. V. Ya. Shur, J. Mater. Sci. 41, 199 (2006). https://doi.org/10.1007/s10853-005-6065-7

    Article  CAS  Google Scholar 

  14. V. Ya. Shur, in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, (Elsevier, 2020). https://doi.org/10.1533/9781845694005.5.622

  15. M. A. Moore and H. C. W. L. Willians, J. Phys. C 5, 3168 (1972).

    Article  CAS  Google Scholar 

  16. T. Tentrup, K. H. Weyrich, and R. Siems, Jpn. J. Appl. Phys. 24, 571 (1985).

    Article  Google Scholar 

  17. L. N. Kamysheva, V. N. Fedosov, and A. S. Sidorkin, Ferroelectrics 13, 463 (1976).

    Article  Google Scholar 

  18. L. I. Stefanovich and O. Yu. Mazur, Formation of Domain Structures in Ferroelectrics under Highly Nonequilibrium Conditions Driven by External Factors (Serednyak T.K., Dnipro, 2019 [in Russian].

  19. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, 1977; Mir, Moscow, 1981).

  20. V.G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics (Fizmatlit, Moscow, 1973) [in Russian].

    Google Scholar 

  21. B. A. Strukov and A. P. Levanyuk, Physical Foundations of Ferroelectric Phenomena in Crystals (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  22. R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974; Mir, Moscow, 1975).

  23. D. C. Mattis, The Theory of Magnetism (Harper & Row, New York, 1965; Mir, Moscow, 1967).

  24. J. M. Ziman, Models of Disorder (Cambridge Univ. Press, 1979; Mir, Moscow, 1982).

  25. L. Pauling, The Nature of the Chemical Bond (Cornell Univ. Press, New York, 1960).

    Google Scholar 

  26. A. S. Sidorkin, Domain Structure in Ferroelectrics and Related Materials (Fizmatlit, Moscow, 2000).

    Google Scholar 

  27. A. S. Sidorkin, Fiz. Tverd. Tela 31, 293 (1989).

    Google Scholar 

  28. J. Bornarel, Ferroelectrics 71, 255 (1987).

    Article  CAS  Google Scholar 

  29. E. Z. Meilikhov and R. M. Farzetdinova, Phys. Rev. E 71, 046111 (2005). https://doi.org/10.1103/PhysRevE.71.046111

    Article  CAS  Google Scholar 

  30. T. Yu. Mikhaylova, N. N. Breslavskaya, and S. P. Dolin, Russ. J. Inorg. Chem. 62, 935 (2017). https://doi.org/10.1134/S003602361707004X

    Article  Google Scholar 

  31. T. Yu. Mikhaylova, N. N. Breslavskaya, and S. P. Dolin, Russ. J. Inorg. Chem. 63, 61 (2018). https://doi.org/10.1134/S0036023618010060

    Article  Google Scholar 

  32. T. Yu. Mikhaylova, N. N. Breslavskaya, and S. P. Dolin, Russ. J. Inorg. Chem. 62, 1600 (2017). https://doi.org/10.1134/S0036023617120130

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-03-00443) and was partially performed within the framework of the State assignment of the IGIC RAS (no. 44.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Dolin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolin, S.P., Mikhaylova, T.Y. & Breslavskaya, N.N. Possibilities of a Simplified Approach to Studying the Features of Structural Phase Transitions in H-Bonded Ferroelectrics with the use of Ab Initio Calculations. Russ. J. Inorg. Chem. 66, 707–713 (2021). https://doi.org/10.1134/S0036023621050041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621050041

Keywords:

Navigation