Skip to main content
Log in

Layered Rare Earth Hydroxides React with Formamide to Give [Ln(HCOO)3 · 2(HCONH2)]

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The long-term (longer than 30 days) stability of dispersions in formamide of layered REE (Y, Gd, and Eu) hydroxides intercalated with dodecyl sulfate anion has been studied for the first time. It has been shown that layered yttrium, gadolinium, and europium hydroxides intercalated with dodecyl sulfate anion react with formamide to form [Ln(HCOO)3 · 2(HCONH2)] (Ln = Y, Gd, or Eu). The structure of the obtained compounds has been determined by single-crystal X-ray diffraction. Obtained data indicate that the colloidal solutions of quasi 2D crystals of layered REE hydroxides in formamide remain stable for several days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. D. Yapryntsev, A. Y. Baranchikov, and V. K. Ivanov, Russ. Chem. Rev. 89, 629 (2020). https://doi.org/10.1070/RCR4920

    Article  CAS  Google Scholar 

  2. Layered Double Hydroxides (Structure and Bonding, Vol. 119.) Ed. by X. Duan and D. G. Evans (Springer, Berlin, 2006). https://doi.org/10.1007/b100426

  3. O. N. Krasnobaeva, T. A. Nosova, D. F. Kondakov, and V. P. Danilov, Russ. J. Inorg. Chem. 63, 1122 (2018). https://doi.org/10.1134/S0036023618090085

    Article  CAS  Google Scholar 

  4. O. N. Krasnobaeva, I. P. Belomestnykh, T. A. Nosova, et al., Russ. J. Inorg. Chem. 64, 1010 (2019). https://doi.org/10.1134/S0036023619080060

    Article  CAS  Google Scholar 

  5. A. D. Yapryntsev, A. Y. Bykov, A. E. Baranchikov, et al., Inorg. Chem. 56, 3421 (2017). https://doi.org/10.1021/acs.inorgchem.6b02948

    Article  CAS  PubMed  Google Scholar 

  6. A. Yapryntsev, B. Abdusatorov, I. Yakushev, et al., Dalt. Trans. 48, 6111 (2019). https://doi.org/10.1039/C9DT00390H

    Article  CAS  Google Scholar 

  7. F. Geng, R. Ma, Y. Matsushita, et al., Inorg. Chem. 50, 6667 (2011). https://doi.org/10.1021/ic200578r

    Article  CAS  PubMed  Google Scholar 

  8. L. Hu, R. Ma, T. C. Ozawa, and T. Sasaki, Chem. Asian J. 5, 248 (2010). https://doi.org/10.1002/asia.200900475

    Article  CAS  PubMed  Google Scholar 

  9. P. Feng, B. Shao, X. Wang, and X. Yang, Eur. J. Inorg. Chem. 2017, 4861 (2017). https://doi.org/10.1002/ejic.201700825

    Article  CAS  Google Scholar 

  10. L. Xie, C. Liu, L. Ma, et al., Dalton Trans. 46, 3110 (2017). https://doi.org/10.1039/C6DT04870F

    Article  CAS  PubMed  Google Scholar 

  11. X. Wang, P. Feng, Y. Zhao, et al., Chem. Select. 1, 17 (2016). https://doi.org/10.1002/slct.201500012

    Article  CAS  Google Scholar 

  12. L. Wu, G. Chen, and Z. Li, Small 13, 1604070 (2017). https://doi.org/10.1002/smll.201604070

    Article  CAS  Google Scholar 

  13. L. Zhang, D. Jiang, J. Xia, et al., RSC Adv. 4, 17856 (2014). https://doi.org/10.1039/c4ra01637h

    Article  CAS  Google Scholar 

  14. B.-I. Lee, J.-S. Bae, E.-S. Lee, and S.-H. Byeon, Bull. Korean Chem. Soc. 33, 601 (2012). https://doi.org/10.5012/bkcs.2012.33.2.601

    Article  CAS  Google Scholar 

  15. A. D. Yapryntsev, K. B. Ustinovich, A. A. Rodina, et al., J. Supercrit. Fluids 150, 40 (2019). https://doi.org/10.1016/j.supflu.2019.04.012

    Article  CAS  Google Scholar 

  16. Q. Gu, X. Liu, Y. Hu, et al., J. Photochem. Photobiol., A 335, 268 (2017). https://doi.org/10.1016/j.jphotochem.2016.12.011

    Article  CAS  Google Scholar 

  17. Q. Gu, M. Yuan, S. Ma, and G. Sun, J. Lumin. 192, 1211 (2017). https://doi.org/10.1016/j.jlumin.2017.08.059

    Article  CAS  Google Scholar 

  18. F. Su, C. Liu, Y. Yang, et al., J. Colloid Interface Sci. 496, 353 (2017). https://doi.org/10.1016/j.jcis.2017.02.039

    Article  CAS  PubMed  Google Scholar 

  19. L. Ma, M. Yuan, C. Liu, et al., Dalton Trans. 46, 12724 (2017). https://doi.org/10.1039/C7DT02662E

    Article  CAS  PubMed  Google Scholar 

  20. J. Hine, R. S. M. King, W. R. Midden, and A. Sinha, J. Org. Chem. 46, 3186 (1981). https://doi.org/10.1021/jo00329a007

    Article  CAS  Google Scholar 

  21. H. Slebocka-Tilk, F. Sauriol, M. Monette, and R. S. Brown, Can. J. Chem. 80, 1343 (2002). https://doi.org/10.1139/v02-166

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick, SADABS. Program for Scaling and Correction of Area Detector Data (Univ. Gottingen (Germany), 1997).

    Google Scholar 

  23. G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  24. F. Geng, Y. Matsushita, R. Ma, et al., J. Am. Chem. Soc. 130, 16344 (2008). https://doi.org/10.1021/ja807050e

    Article  CAS  PubMed  Google Scholar 

  25. F. Geng, Y. Matsushita, R. Ma, et al., Inorg. Chem. 48, 6724 (2009). https://doi.org/10.1021/ic900669p

    Article  CAS  PubMed  Google Scholar 

  26. L. J. Mcintyre, L. K. Jackson, and A. M. Fogg, Chem. Mater. 20, 335 (2008). https://doi.org/10.1021/cm7019284

    Article  CAS  Google Scholar 

  27. F. Geng, H. Xin, Y. Matsushita, et al., Chem.-Eur. J. 14, 9255 (2008). https://doi.org/10.1002/chem.200800127

    Article  CAS  PubMed  Google Scholar 

  28. A. D. Yapryntsev, A. E. Baranchikov, L. S. Skogareva, et al., CrystEngComm 17, 2667 (2015). https://doi.org/10.1039/C4CE02303J

    Article  CAS  Google Scholar 

  29. A. D. Yapryntsev, A. E. Baranchikov, A. V. Zabolotskaya, et al., Russ. J. Inorg. Chem. 59, 1383 (2014). https://doi.org/10.1134/S0036023614120286

    Article  CAS  Google Scholar 

  30. A. E. Baranchikov, A. D. Yapryntsev, A. E. Goldt, et al., Curr. Microw. Chem. 2, 1 (2015). https://doi.org/10.2174/2213335602666150119220922

    Article  CAS  Google Scholar 

  31. G. Duplatre, M. F. Ferreira Marques, and M. da Graça Miguel, J. Phys. Chem. 100, 16608 (1996). https://doi.org/10.1021/jp960644m

    Article  CAS  Google Scholar 

  32. V. V. Vysotskii, O. Y. Uryupina, A. V. Gusel’nikova, and V. I. Roldugin, Colloid J. 71, 739 (2009). https://doi.org/10.1134/S1061933X09060027

    Article  CAS  Google Scholar 

  33. J. Legendziewicz, T. Głowiak, G. Oczko, and D. C. Ngoan, J. Less-Common Met. 125, 45 (1986). https://doi.org/10.1016/0022-5088(86)90079-2

    Article  CAS  Google Scholar 

  34. R. D. Shannon and C. T. Prewitt, J. Inorg. Nucl. Chem. 32, 1427 (1970). https://doi.org/10.1016/0022-1902(70)80629-7

    Article  CAS  Google Scholar 

  35. P. Samarasekere, X. Wang, W. Kaveevivitchai, A. J. Jacobson, Cryst. Growth Des. 15, 1119 (2015). https://doi.org/10.1021/cg501421u

Download references

Funding

This work was performed under the State assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of Fundamental research with the use of equipment of the Shared Facility Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, operating under the State assignment for the Kurnakov Institute of General and Inorganic Chemistry, in the field of Fundamental research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Baranchikov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodina, A.A., Yapryntsev, A.D., Churakov, A.V. et al. Layered Rare Earth Hydroxides React with Formamide to Give [Ln(HCOO)3 · 2(HCONH2)]. Russ. J. Inorg. Chem. 66, 125–132 (2021). https://doi.org/10.1134/S0036023621020169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621020169

Keywords:

Navigation