Skip to main content
Log in

Thermal decomposition of layered double hydroxides Mg-Al, Ni-Al, Mg-Ga: Structural features of hydroxide, dehydrated, and oxide phases

  • The Bridging and Bonding Role of Crystallography
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The analysis of the literature data reveals that, as a rule, layered double hydroxides prepared by co-precipitation have an imperfect structure; however, there are different viewpoints on the type of the defects. Thermal decomposition of Mg-Al, Mg-Ga, and Ni-Al hydroxides occurs through dehydration, dehydroxylation, and decarbonization. The first stage affords a layered dehydrated phase with a strongly disordered structure, which is a subject of controversy. Also, the question on the diffusion of cations during thermolysis is still open, i.e., whether the Mg-Al, Mg-Ga and Ni-Al systems degrade with the development of a nanoheterogenous oxide systems or a single-phase mixed oxide, but with very defective structure, is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cavani, F. Trifiro, and A. Vaccari, Catal. Today, 11, 173–301 (1991).

    CAS  Google Scholar 

  2. R. L. Frost and A. W. Musumeci, J. Colloid Interface Sci., 302, No. 1, 203–206 (2006).

    CAS  Google Scholar 

  3. F. L. Theiss, S. J. Palmer, G. A. Ayoko, and R. L. Frost, J. Therm. Anal. Calorim., 107, 1123–1128 (2012).

    CAS  Google Scholar 

  4. I. V. Romanova, A. V. Lozovskii, and V. V. Strelko, Khimiya i technologiya vody, 27, No. 4, 313–320 (2005).

    CAS  Google Scholar 

  5. Yu. I. Tarasevich and G. M. Klimova, Khimiya i technologiya vody, 28, No. 2, 107–116 (2006).

    CAS  Google Scholar 

  6. L. A. Marchenko, T. N. Bokovikova, E. A. Belogolov, and A. A. Marchenko, Ekologiya is promyshlennost Rossii, 1, 57–59 (2010).

    Google Scholar 

  7. T. N. Bokovikova, O. V. Novoseletskaya, and A. S. Shabanov, Elektron. zhur. “Phiziko-khimicheskii analiz svoistv mnogokomponentnykh sistem”, 3 (2007).

    Google Scholar 

  8. V. Rives and M. A. Ulibarri, Coordinat. Chem. Rev., 181, 61–120 (1999).

    CAS  Google Scholar 

  9. L. N. Stepanova, O. B. Bel’skaya, N. N. Leont’eva, and V. A. Likholobov, Zhurn. Sibir. Federal. un-ta. Ser. Khimiya, 4, No. 5, 361–375 (2012).

    Google Scholar 

  10. L. N. Stepanova, O. B. Bel’skaya, M. O. Kazakov, and V. A. Likholobov, Kinetika i kataliz, 54, No. 4, 533–539 (2013).

    Google Scholar 

  11. F. Kovanda, Z. Maryšková, P. Kovář, J. Solid State Chem., 184, No. 12, 3329–3335 (2011).

    CAS  Google Scholar 

  12. F. Li and X. Duan, Applications of Layered Double Hydroxides, in: Structure and Bonding, Vol. 119: Layered Double Hydroxides, X. Duan and D. G. Evans (eds.), Springer, New York, USA (2006), pp. 193–223.

    Google Scholar 

  13. A. V. Lukashin, M. V. Chernycheva, A. A. Vertegel, and Yu. D. Tret’yakov, Dokl. AN, 388, No. 2, 200–204 (2003).

    Google Scholar 

  14. E. O. Butenko, G. E. Abrosimova, A. S. Aronin, D. Bish, E. V. Kapustina, and A. E. Kapustin, Visn. Priazov. derzh. tekhn. un-tu: zb. nauk. prats., 19, 307–311 (2009).

    Google Scholar 

  15. A. I. Tsyganok, M. Inaba, T. Tsunoda, K. Suzuki, K. Takehira, and T. Hayakawa, Appl. Catal., A, 275, 149–155 (2004).

    Google Scholar 

  16. O. B. Bel’skaya, N. N. Leont’eva, T. I. Gulayeva, V. A. Drozdov, V. P. Doronin, V. I. Zaikovskii, and V. A. Likholobov, Kinetika i kataliz, 52, No. 6, 899–909 (2011).

    Google Scholar 

  17. S. Abelló, D. Verboekend, B. Bridier, and J. Pérez-Ramírez, J. Catal., 259, No. 1, 85–95 (2008).

    Google Scholar 

  18. M. Gabrovska, R. Evdreva-Kardjieva, D. Crisan, P. Tzvetkov, M. Shopska, and I. Shtereva, React. Kinetics, Mechanisms and Catalysis, 105, 79–99 (2012).

    CAS  Google Scholar 

  19. A. E. Palomares, A. Uzca’tegui, and A. Corma,, Catal. Today, 137, 261–266 (2008).

    CAS  Google Scholar 

  20. M. Sychev, R. Prihod’ko, K. Erdmann, A. Mangel, and R. A. van Santen, Appl. Clay Sci., 18, 103–110 (2001).

    CAS  Google Scholar 

  21. A. Matei, R. Birjega, A. Nedelcea, A. Vlad, D. Colceag, M. D. Ionita, C. Luculescu, M. Dinescu, R. Zavoianu, and O. D. Pavel, Appl. Surface Sci., 257, No. 12, 5308–5311 (2011).

    CAS  Google Scholar 

  22. J. A. Gursky, S. D. Blough, C. Luna, C. Gomez, A. N. Luevano, and E. A. Gardner, J. Am. Chem. Soc., 128, 8376/8377 (2006).

    Google Scholar 

  23. Y. Z. F. Zhang, Y. Lu, T. Chen, and L. Yang, J. Phys. Chem. Sol., 71, No. 4, 604–607 (2010).

    CAS  Google Scholar 

  24. T. Hibino and M. Kobayashi, J. Mater. Chem., 15, 653–656 (2005).

    CAS  Google Scholar 

  25. Q. Z. Meng Qiang Zhao, Jia-Qi Huang, Jing-Qi Nie, and Fei Wei, Carbon, 48, 3260–3270 (2010).

    Google Scholar 

  26. R. Allmann and H. P. Jepsen, Neues Jahrbuch für Mineralogie, 544–551 (1969).

    Google Scholar 

  27. A. V. Arakcheeva, Kristallografiya, 41, No. 6, 1024–1034 (1996).

    CAS  Google Scholar 

  28. A. A. Eliseev, A. A. Lukashin, A. A. Vertegel, V. P. Tarasov, and Yu. D. Tret’yakov, Dokl. AN, 387, No. 6, 777–781 (2002).

    Google Scholar 

  29. D. G. Evance and R. T. Slade, Structural aspects of layered double hydroxides, in: Structure and bonding, Vol. 119: Layered Double Hydroxides, X. Duan and D. G. Evans (eds.), Springer-Verlag, Heidelberg, Berlin, Germany (2006), pp. 1–87.

    Google Scholar 

  30. I. G. Ryl’tsova and O. E. Lebedeva, Nauchn. Vedomosti Belgorod. gos. un-ta, Ser. Estestv. nauki, 7, No. 47, 96–100 (2008).

    Google Scholar 

  31. G. Alberti and U. Costantino, in: Two- and Three-Dimensional Inorganic Networks, Solid State Supramolecular Chemistry, G. B. T. Alberti (ed.), Pergamon, Elsevier Science LTD Press, Oxford UK (1996), vol. 7.

  32. E. López-Salinas, M. García-Sánchez, M. L. Ramón-García, and I. Schifter, J. Porous Mater., 3, No. 3, 169–174 (1996).

    Google Scholar 

  33. B. G. C. Carteret and C. Ruby, Solid State Sci., 13, 146–150 (2011).

    CAS  Google Scholar 

  34. S. Miyata, Clays Clay Miner., 28, No. 1, 50–56 (1980).

    CAS  Google Scholar 

  35. M. R. B. Bellotto, O. Clause, J. Lynch, D. Bazin, and E. A. Elkam, J. Phys. Chem., 100, No. 20, 8527–8534 (1996).

    CAS  Google Scholar 

  36. S. A. Solin, D. R. Hines, G. T. Seidler, and M. M. J. Treacy, J. Phys. Chem. Sol., 57, No. 6–8, 1043–1048 (1996).

    CAS  Google Scholar 

  37. S. P. Newman, W. Jones, P. O’Connor, and D. N. Stamires,, J. Mater. Chem., 12, No. 2, 153–155 (2002).

    CAS  Google Scholar 

  38. D. R. Hines, G. T. Seidler, M. M. J. Treacy, and S. A. Solin, Solid State Commun., 101, No. 11, 835–839 (1997).

    CAS  Google Scholar 

  39. A. S. Bookin and V. A. Drits, Clays Clay Miner., 41, No. 5, 551–557 (1993).

    CAS  Google Scholar 

  40. A. S. Bookin, V. I. Cherkashin, and V. A. Drits, Clays Clay Miner., 41, No. 5, 558–564 (1993).

    CAS  Google Scholar 

  41. W. N. Budhysutanto, R. W. A. Hendrikx, and H. J. M. Kramer, Appl. Clay Sci., 54, No. 1, 374–380 (2011).

    Google Scholar 

  42. W. N. Budhysutanto, D. van Agterveld, E. Schomaker, A. G. Talma, and H. J. M. Kramer, Appl. Clay Sci., 48, Nos. 1/2, 208–231 (2010).

    CAS  Google Scholar 

  43. W. N. Budhysutanto, P. W. Cains, G. M. van Rosmalen, and H. J. M. Kramer, Appl. Clay Sci., 62/63, 27–31 (2012).

    Google Scholar 

  44. I. Pausch, H. H. Lohse, K. Schuermann, and R. Allmann, Clays Clay Miner., 34, No. 5, 507–510 (1986).

    CAS  Google Scholar 

  45. E. López-Salinas, M. García-Sánchez, J. A. Montoya, D. R. Acosta, J. A. Abasolo, and I. Schifter, Langmuir, 13, No. 17, 4748–4753 (1997).

    Google Scholar 

  46. L.-M. Grand, S. Palmer, and R. Frost, J. Therm. Anal. Calorim., 101, No. 1, 195–198 (2010).

    CAS  Google Scholar 

  47. M. A. Aramendía, V. Borau, C. Jiménez, J. M. Marinas, J. R. Ruiz, and F. J. Urbano, Mater. Lett., 46, No. 6, 309–314 (2000).

    Google Scholar 

  48. H. Pfeiffer, L. Martínez-dlCruz, E. Lima, J. Flores, M. A. Vera, and J. S. Valente, J. Phys. Chem. C, 114, No. 18, 8485–8492 (2010).

    CAS  Google Scholar 

  49. R. L. Frost, S. J. Palmer, and L.-M. Grand, J. Raman Spectrosc., 41, No. 7, 791–796 (2010).

    CAS  Google Scholar 

  50. F. Kovanda, T. Rojka, P. Bezdička, K. Jirátová, L. Obalová, K. Pacultová, Z. Bastl, and T. Grygar, J. Solid State Chem., 182, No. 1, 27–36 (2009).

    CAS  Google Scholar 

  51. S. A. Solin, D. Hines, S. K. Yun, T. J. Pinnavaia, and M. F. Thorpe, J. Non-Cryst. Solids, 182, Nos. 1/2, 212–220 (1995).

    CAS  Google Scholar 

  52. R. A. Young, The Rietveld Method, Oxford University Press, New York (1993).

    Google Scholar 

  53. H. M. Rietveld, J. Appl. Crystallogr., 2, 65–71 (1969).

    CAS  Google Scholar 

  54. I. L. Shukaev, A. A. Pospelov, and A. A. Gannochenko, J. Solid State Chem., 180, No. 8, 2189–2193 (2007).

    CAS  Google Scholar 

  55. D. A. Balaev, O. A. Bulavchenko, A. A. Dubrovskii, S. V. Tsybulya, S. V. Chrepanova, E. Yu. Gerasimov, and K. A. Shaikhutdinov, Phizika tverdogo tela, 55, No. 7, 1304–1309 (2013).

    Google Scholar 

  56. T. Yu. Kardash, L. M. Plyasova, V. M. Bondareva, and A. N. Shmakov, J. Struct. Chem., 49, No. 4, 701–707 (2008).

    CAS  Google Scholar 

  57. M. M. J. Treacy, J. M. Newsam, and M. W. Deem, Proceed. Royal Soc. London. Ser. A: Mathematical and Physical Sciences, 433, No. 1889, 499–520 (1991).

    Google Scholar 

  58. M. Leoni, A. F. Gualtieri, and N. Roveri, J. Appl. Crystallogr., 37, No. 1, 166–173 (2004).

    CAS  Google Scholar 

  59. S. V. Cherepanova and S. V. Tsybulya, Mater. Sci. Forum., 443, No. 4, 87–90 (2004).

    Google Scholar 

  60. K. I. Shefer, S. V. Cherepanova, S. V. Tsybulya, V. P. Isupov, and E. M. Moroz, J. Struct. Chem., 54, No. 4, 730–740 (2013).

    CAS  Google Scholar 

  61. K. I. Shefer, S. V. Cherepanova, E. M. Moroz, Yu. N. Gerasimov and S. V. Tsybulya, J. Struct. Chem., 51, No. 1, 132–141 (2010).

    CAS  Google Scholar 

  62. S. V. Tsybulya and G.N. Kryukova, Phys. Rev. B: Condens. Mater., 77, No. 2, 024112 (2008).

    Google Scholar 

  63. S. V. Cherepanova and S. V. Tsybulya, Zeitschrift für Kristallographie Suppl.,. 23, 155–160 (2006).

    Google Scholar 

  64. A. V. Radha, P. Vishnu Kamath, and G. N. Subbanna, Mater. Res. Bull., 38, No. 5, 731–740 (2003).

    CAS  Google Scholar 

  65. C. Delmas and C. Tessier, J. Mater. Chem., 7, No. 8, 1439–1443 (1997).

    CAS  Google Scholar 

  66. T. N. Ramesh, R. S. Jayashree, and P. V. Kamath, Clays Clay Miner., 51, No. 5, 570–576 (2003).

    CAS  Google Scholar 

  67. N. N. Leont’eva, S. V. Cherepanova, V. A. Drozdov, O. B. Bel’skaya, S. V. Tsybulya, and L. N. Stepanova,, Theor. Exp. Chem., 48, No. 4, 278–282 (2012).

    Google Scholar 

  68. V. A. Dritz and A. S. Bookin, Crystal structure and X-ray identification of layered double hydroxides, in: Layered Double Hydroxides: Present and Future, V. Rives (ed.), Nova Science, New York (2001), pp. 39–92.

    Google Scholar 

  69. G. S. Thomas, M. Rajamathi, and P. V. Kamath, Clays Clay Miner., 52, No. 6, 693–699 (2004).

    CAS  Google Scholar 

  70. A. V. Radha, C. Shivakumara, and P. V. Kamath, Clays Clay Miner., 53, No. 5, 520–527 (2005).

    CAS  Google Scholar 

  71. S. Britto, G. S. Thomas, P. V. Kamath, and S. Kannan, J. Phys. Chem. C, 112, No. 25, 9510–9515 (2008).

    CAS  Google Scholar 

  72. T. Sato, K. Kato, T. Endo, and M. Shimada, Reactiv. Solids, 2, No. 3, 253–260 (1986).

    CAS  Google Scholar 

  73. T. Sato, H. Fujita, T. Endo, M. Shimada, and A. Tsunashima, Reactiv. Solids, 5, Nos. 2/3, 219–228 (1988).

    CAS  Google Scholar 

  74. D. Tichit, M. N. Bennani, F. Figueras, and J. R. Ruiz, Langmuir, 14, No. 8, 2086–2091 (1998).

    CAS  Google Scholar 

  75. T. Hibino and A. Tsunashima, Chem. Mater., 10, No. 12, 4055–4061 (1998).

    CAS  Google Scholar 

  76. F. Millange, R. I. Walton, and D. O’Hare,, J. Mater. Chem., 10, No. 7, 1713–1720 (2000).

    CAS  Google Scholar 

  77. M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosín, and J. Cornejo, Appl. Clay Sci., 18, Nos. 1/2, 17–27 (2001).

    CAS  Google Scholar 

  78. R. V. Prikhod’ko, M. V. Sychev, I. M. Astrelin, K. Erdmann, A. Mangel, and R. A. van Santen, Russ. J. Appl. Chem., 74, No. 10, 1621–1626 (2001).

    Google Scholar 

  79. T. Stanimirova and G. Kirov, Appl. Clay Sci., 22, No. 6, 295–301 (2003).

    CAS  Google Scholar 

  80. F. Delorme, A. Seron, M. Bizi, V. Jean-Prost, and D. Martineau, J. Mater. Sci., 41, No. 15, 4876–4882 (2006).

    CAS  Google Scholar 

  81. T. Stanimirova and V. Balek, J. Therm. Anal. Calorim., 94, No. 2, 477–481 (2008).

    CAS  Google Scholar 

  82. M. Mokhtar, A. Inayat, J. Ofili, and W. Schwieger, Appl. Clay Sci., 50, No. 2, 176–181 (2010).

    CAS  Google Scholar 

  83. H. Pfeiffer, E. Lima, V. C. Lara, and J. S. Valente, Langmuir, 26, No. 6, 4074–4079 (2009).

    Google Scholar 

  84. N. Iyi, K. Fujii, K. Okamoto, and T. Sasaki, Appl. Clay Sci., 35, Nos. 3/4, 218–227 (2007).

    CAS  Google Scholar 

  85. A. Węgrzyn, A. Rafalska-Łasocha, D. Majda, R. Dziembaj, and H. Papp, J. Therm. Anal. Calorim., 99, No. 2, 443–457 (2010).

    Google Scholar 

  86. T. Stanimirova, I. Vergilov, G. Kirov, and N. Petrova, J. Mater. Sci., 34, No. 17, 4153–4161 (1999).

    CAS  Google Scholar 

  87. W. Yang, Y. Kim, P. K. T. Liu, M. Sahimi, and T. T. Tsotsis, Chem. Engineer. Sci., 57, No. 15, 2945–2953 (2002).

    CAS  Google Scholar 

  88. J. Pérez-Ramírez, S. Abelló, and N. M. van der Pers, J. Phys. Chem. C, 111, No. 9, 3642–3650 (2007).

    Google Scholar 

  89. E. Kanezaki, Solid State Ionics, 106, Nos. 3/4, 279–284 (1998).

    CAS  Google Scholar 

  90. E. Kanezaki, Inorg. Chem., 37, No. 10, 2588–2590 (1998).

    CAS  Google Scholar 

  91. E. Kanezaki, Mater. Res. Bull., 33, No. 5, 773–778 (1998).

    CAS  Google Scholar 

  92. M. Gazzano, W. Kagunya, D. Matteuzzi, and A. Vaccari, J. Phys. Chem. B, 101, No. 23, 4514–4519 (1997).

    CAS  Google Scholar 

  93. M. Bellotto, B. Rebours, O. Clause, J. Lynch, D. Bazin, and E. Elkam, J. Phys. Chem., 100, No. 20, 8535–8542 (1996).

    CAS  Google Scholar 

  94. G. S. Thomas, A. V. Radha, P. V. Kamath, and S. Kannan, J. Phys. Chem. B, 110, No. 25, 12365–12371 (2006).

    CAS  Google Scholar 

  95. D. G. Costa, A. B. Rocha, W. F. Souza, S. S. X. Chiaro, and A. A. Leitão, J. Phys. Chem. C, 116, No. 25, 13679–13687 (2012).

    CAS  Google Scholar 

  96. O. Clause, B. Rebours, E. Merlen, F. Trifiró, and A. Vaccari, J. Catal., 133, No. 1, 231–246 (1992).

    CAS  Google Scholar 

  97. M. Jitianu, M. Bãlãsoiu, R. Marchidan, M. Zaharescu, D. Crisan, and M. Craiu, Int. J. Inorg. Mater., 2, Nos. 2/3, 287–300 (2000).

    CAS  Google Scholar 

  98. L. Smoláková, L. Čapek, Š. Botková, F. Kovanda, R. Bulánek, and M. Pouzar, Top. Catal., 54, Nos. 16–18, 1151–1162 (2011).

    Google Scholar 

  99. E. Lopez-Salinas, E. Torres-Garcia, and M. García-Sanchez, J. Phys. Chem. Solids, 58, No. 6, 919–925 (1997).

    CAS  Google Scholar 

  100. R. E. Johnsen, Q. Wu, A. O. SjÅstad, Ø. B. Vistad, F. Krumeich, and P. Norby, J. Phys. Chem. C, 112, No. 43, 16733–16739 (2008).

    CAS  Google Scholar 

  101. J. Shen, M. Tu, and C. Hu, J. Solid State Chem., 137, No. 2, 295–301 (1998).

    CAS  Google Scholar 

  102. S. Velu, N. Shah, T. M. Jyothi, and S. Sivasanker, Microporous Mesoporous Mater., 33, Nos. 1–3, 61–75 (1999).

    CAS  Google Scholar 

  103. C. Gennequin, R. Cousin, J. F. Lamonier, S. Siffert, and A. Aboukas, Catal. Commun., 9, No. 7, 1639–1643 (2008).

    CAS  Google Scholar 

  104. A. E. Palomares, A. Uzcátegui, and A. Corma, Catal. Today, 137, Nos. 2–4, 261–266 (2008).

    CAS  Google Scholar 

  105. K. Klemkaite, I. Prosycevas, R. Taraskevicius, A. Khinsky, and A. Kareiva, Centr. Eur. J. Chem., 9, No. 2, 275–282 (2011).

    CAS  Google Scholar 

  106. D. Meloni, M. F. Sini, M. G. Cutrufello, R. Monaci, E. Rombi, and I. Ferino, J. Therm. Anal. Calorim., 108, No. 2, 783–791 (2012).

    CAS  Google Scholar 

  107. T. G. Timoshenko, A. A. Kosorukov, G. N. Pshinko, and V. V. Goncharuk, Khimiya i tekhnologiya vody, 31, No. 4, 437–447 (2009).

    CAS  Google Scholar 

  108. O. B. Bel’skaya, T. I. Gulyaeva, S. V. Cherepanova, V. P. Talzi, V. A. Drozdov, and V. A. Likholobov, Izv. AN. Ser. Khim., 11, 2349–2361 (2013).

    Google Scholar 

  109. F. M. Labajos, V. Rives, and M. A. Ulibarri, J. Mater. Sci., 27, No. 6, 1546–1552 (1992).

    CAS  Google Scholar 

  110. M. L. Valcheva-Traykova, N. P. Davidova, and A. H. Weiss, J. Mater. Sci., 28, No. 8, 2157–2162 (1993).

    CAS  Google Scholar 

  111. J. Theo Kloprogge and R. L. Frost, Appl. Catal., A, 184, No. 1, 61–71 (1999).

    CAS  Google Scholar 

  112. J. T. Kloprogge, L. Hickey, and R. L. Frost, Appl. Clay Sci., 18, Nos. 1/2, 37–49 (2001).

    CAS  Google Scholar 

  113. A. Wajler, H. Tomaszewski, E. Drożdż-Cieśla, H. Węglarz, and Z. Kaszkur, J. Eur. Ceram. Soc., 28, No. 13, 2495–2500 (2008).

    CAS  Google Scholar 

  114. J. C. A. A. Roelofs, J. A. van Bokhoven, A. J. van Dillen, J. W. Geus, and K. P. de Jong, Chem. Eur. J., 8, No. 24, 5571–5579 (2002).

    CAS  Google Scholar 

  115. B. Rebours, J.-B. d’Espinose de la Caillerie, and O. Clause,, J. Am. Chem. Soc., 116, No. 5, 1707–1717 (1994).

    CAS  Google Scholar 

  116. R. E. Johnsen and P. A. Norby, J. Phys. Chem. C, 113, No. 44, 19061–19066 (2009).

    CAS  Google Scholar 

  117. L. E. Alzamora, J. R. H. Ross, E. C. Kruissink, and L. L. van Reijen, J. Chem. Soc., Faraday Transact. 1: Physical Chemistry in Condensed Phases, 77, No. 3, 665–681 (1981).

    CAS  Google Scholar 

  118. C. J. Wright, C. G. Windsor, and D. C. Puxley, J. Catal., 78, No. 1, 257–261 (1982).

    CAS  Google Scholar 

  119. O. Clause, M. Goncalves Coelho, M. Gazzano, D. Matteuzzi, F. Trifirò, and A. Vaccari, Appl. Clay Sci., 8, Nos. 2/3, 169–186 (1993).

    CAS  Google Scholar 

  120. F. Trifirò, A. Vaccari, and O. Clause, Catal. Today, 21, No. 1, 185–195 (1994).

    Google Scholar 

  121. H. P. Rooksby, Acta Crystallogr., 1, No. 4, 226 (1948).

    CAS  Google Scholar 

  122. C. Qi, J. C. Amphlett and B. A. Peppley, Appl. Catal., A, 302, No. 2, 237–243 (2006).

    CAS  Google Scholar 

  123. Q. Wang, W. Ren, X. Yuan, R. Mu, Z. Song, and X. Wang, Int. J. Hydrogen Energy, 37, No. 15, 11488–11494 (2012).

    CAS  Google Scholar 

  124. G. S. Thomas and P. V. Kamath, Mater. Res. Bull., 40, No. 4, 671–681 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Cherepanova.

Additional information

Original Russian Text © 2014 N. N. Leont’eva, S. V. Cherepanova, V. A. Drozdov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, Supplement 1, pp. S145–S162, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leont’eva, N.N., Cherepanova, S.V. & Drozdov, V.A. Thermal decomposition of layered double hydroxides Mg-Al, Ni-Al, Mg-Ga: Structural features of hydroxide, dehydrated, and oxide phases. J Struct Chem 55, 1326–1341 (2014). https://doi.org/10.1134/S0022476614070142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614070142

Keywords

Navigation