Skip to main content
Log in

Effect of Exposure to Air on the Phase Composition and Particle Size of Nanocrystalline Lead Sulfide

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline powders of lead sulfide with particle size from 5 to 105 nm have been synthesized by chemical deposition from aqueous solutions of lead acetate or nitrate using sodium sulfide as sulfidizing agent and in the presence of sodium citrate or Trilon B as complexing agents. The exposure of the nanopowders to air for six years has shown that PbS nanopowders obtained in the presence of sodium citrate Na3Cit, which behaves as both complexing and stabilizing agent, display the largest stability of phase composition. The stabilizing role of Na3Cit is due to its ability to form a shell on nanoparticle surface to prevent lead sulfide oxidation. It has been established that nanoparticle size remains constant and stable upon long-term keeping in air. The phase composition of PbS nanopowders prepared using Trilon B gradually changes owing to oxidation into lead sulfate upon long-term exposure to air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Noda, S. Ohba, S. Sato, and Y. Saito, Acta Crystallogr. B 39, 312 (1983).

    Article  Google Scholar 

  2. W. W. Scanlon, J. Phys. Chem. Solids 8, 423 (1959).

    Article  CAS  Google Scholar 

  3. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Russ. Chem. Rev. 85, 731 (2016). https://doi.org/10.1070/RCR4594

    Article  CAS  Google Scholar 

  4. S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer, Heidelberg, 2018). https://doi.org/10.1007/978-3-319-56387-9

  5. J. N. Zemmel, J. D. Jensen, and R. B. Schoolar, Phys. Rev. A 140, 330 (1965).

    Article  Google Scholar 

  6. G. Bauer and H. Clemens, Semicond. Sci. Technol. 5, S122 (1990).

    Article  CAS  Google Scholar 

  7. H. Preier, Semicond. Sci. Technol. 5, S12 (1990).

    Article  Google Scholar 

  8. A. M. Malyarevich, V. G. Savitskia, M. S. Gaponenko, et al., Proc. SPIE, Intern. Conf. on Lasers, Applications, and Technologies (2005), Intern. Soc. Opt. Eng., 6054, 60540Q1 (2006). https://doi.org/10.1117/12.660806

  9. A. Slonopas, N. Alijabban, C. Saltonstall, et al., Electrochim. Acta 151, 1409 (2014). https://doi.org/10.1016/j.electacta.2014.11.021

    Article  CAS  Google Scholar 

  10. S. Kumar, Nano Res. Appl. 1, No. 1 (2015). https://nanotechnology.imedpub.com/archive.php.

  11. H. Zogg, A. Fach, C. Maissen, et al., Opt. Eng. 33, 1440 (1994). https://doi.org/10.1117/12.165808

    Article  CAS  Google Scholar 

  12. S. B. Qadri, A. Singh, and M. Yousuf, Thin Solid Films 431–432, 506 (2003). https://doi.org/10.1016/S0040-6090(03)00245-1

    Article  CAS  Google Scholar 

  13. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, JETP Lett. 89, 238 (2009). https://doi.org/10.1134/S0021364009050051

    Article  CAS  Google Scholar 

  14. S. I. Sadovnikov, J. Alloys Comp. 788, 5869 (2019). https://doi.org/10.1016/j.jallcom.2019.02.244

  15. Yu. Yu. Lur’e, Handbook on Analytical Chemistry (Khimiya, Moscow, 1967) p. 101 [in Russian].

    Google Scholar 

  16. P. Patnaik, Dean’s Analytical Chemistry Handbook (McGraw-Hill, New York, 2004), p. 1280. ISBN 978-0071410601

    Google Scholar 

  17. A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian]. ISBN 978-5-9221-0582-8

    Google Scholar 

  18. A. I. Gusev and A. S. Kurlov, Physics of Metals and New Technologies 30, 679 (2008).

    CAS  Google Scholar 

  19. X'Pert HighScore Plus, Version 2.2e (2.2.5), PANalytical B.V. Almedo, the Netherlands.

  20. Match! Version 1.9a. Phase Identification from Powder Diffraction, Crystal Impact.

  21. R. Chen, N. T. Nuhfer, L. Moussa, et al., Nanotecnology 19, 455604 (2008). https://doi.org/10.1088/0957-4484/19/45/455604

    Article  CAS  Google Scholar 

  22. S. I. Sadovnikov, Russ. J. Inorg. Chem. 64, 1309 (2019). https://doi.org/10.1134/S0036023619100115

    Article  CAS  Google Scholar 

  23. S. I. Sadovnikov, A. I. Gusev, E. Yu. Gerasimov, and A. A. Rempel, Chem. Phys. Lett. 642, 17 (2015). https://doi.org/10.1016/j.cplett.2015.11.004

    Article  CAS  Google Scholar 

  24. S. I. Sadovnikov and A. I. Gusev, Eur. J. Inorg. Chem. No. 31, 4944 (2016). https://doi.org/10.1002/ejic.201600881

  25. S. I. Sadovnikov, A. I. Gusev, E. Yu. Gerasimov, et al., Inorg. Mater. 52, 441 (2016). https://doi.org/10.1134/S0020168516050149

    Article  CAS  Google Scholar 

  26. S. I. Sadovnikov and A. I. Gusev, Russ. J. Gen. Chem. 84, 173 (2014). https://doi.org/10.1134/S1070363214020017

    Article  CAS  Google Scholar 

  27. S. Wang, A. Pan, H. Yin, et al., Mater. Lett. 60, 1242 (2006). https://doi.org/10.1016/j.matlet.2005.10.116

    Article  CAS  Google Scholar 

  28. Q.-L. Qing-Li Huang, Chen Hu, et al., Mater. Lett. 64, 1891 (2010). https://doi.org/10.1016/j.matlet.2010.05.048

    Article  CAS  Google Scholar 

  29. A. A. Valeeva, K. A. Petrovykh, H. Schroettner, and A. A. Rempel, Inorg. Mater. 51, 1132 (2015). https:// doi: 10.1134/S0020168515110138

Download references

ACKNOWLEDGMENTS

The author thanks Professor A.I. Gusev for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sadovnikov.

Ethics declarations

The author declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, S.I. Effect of Exposure to Air on the Phase Composition and Particle Size of Nanocrystalline Lead Sulfide. Russ. J. Inorg. Chem. 65, 812–819 (2020). https://doi.org/10.1134/S0036023620060170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620060170

Keywords:

Navigation