Skip to main content
Log in

Noncovalent Interactions in Compounds Based on Perchlorinated Boron Cluster as Monitored by 35Cl NQR (Review)

  • PHYSICAL RESEARCH METHODS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The article surveys the first 35Cl NQR results on detecting and characterizing noncovalent interactions in systems assembling [B10Cl10]2− clusters via halogen atoms. A number of compounds of decachloro-closo-decaborates with alkali metal or organic cations as well as with silver(I), copper(II) and iron(II) complexes were studied using 35Cl NQR and X-ray diffraction. The main interest of this survey is a capability of chlorine atoms to participate in noncovalent interactions with organic cations, ligand and solvent molecules without touching upon issues of synthesis. Whereas X-ray diffraction establishes the noncovalent interactions relying on the sum of vdW radii which serves as the basic and sometimes the only experimental criterion for identifying such interactions, the 35Cl NQR technique registers subtle perturbations in electron density distribution on the chlorine site caused by secondary interactions Cl···X. They adequately split the 35Cl NQR spectra thus selecting from the entire set of interatomic contacts those actually induced by noncovalent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

Similar content being viewed by others

REFERENCES

  1. E. L. Muetterties, J. H. Balthis, Y. T. Chia, et al., Inorg. Chem. 3, 444 (1964). https://doi.org/10.1021/ic50013a030

    Article  CAS  Google Scholar 

  2. E. L. Muetterties and W. H. Knoth, Polyhedral Boranes (Dekker, New York, 1968).

    Google Scholar 

  3. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed. (Butterworth-Heinemann, 1997).

    Google Scholar 

  4. F. Teixidor, C. Viñas, A. Demonceau, et al., Pure Appl. Chem. 75, 1305 (2003). https://doi.org/10.1351/pac200375091305

    Article  CAS  Google Scholar 

  5. I. B. Sivaev, A. V. Prikaznov, and D. Naoufal, Collect. Czech. Chem. Commun. 75, 1149 (2010).

    Article  CAS  Google Scholar 

  6. K. Yu. Zhizhin, A. P. Zhdanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 55, 2089 (2010). https://doi.org/10.1134/S0036023610140019

    Article  CAS  Google Scholar 

  7. J. A. Morrison, Chem. Rev. 91, 35 (1991). https://doi.org/10.1021/cr00001a003

    Article  CAS  Google Scholar 

  8. E. A. Malinina, V. V. Avdeeva, L. V. Goeva, et al., Russ. J. Inorg. Chem. 55, 2148 (2010). https://doi.org/10.1134/S0036023610140032

    Article  CAS  Google Scholar 

  9. E. J. Juarez-Perez, R. Nunez, C. Vinas, et al., Eur. J. Inorg. Chem., No. 16, 2385 (2010). https://doi.org/10.1002/ejic.201000157

  10. E. Arunan, G. R. Desiraju, R. A. Klein, et al., Pure Appl. Chem. 83, 1619 (2011). https://doi.org/10.1351/PAC-REP-10-01-01

    Article  CAS  Google Scholar 

  11. G. R.Desiraju, P. S.Ho, L. Kloo, et al., Pure Appl. Chem. 85, 1711 (2013). https://doi.org/10.1351/PAC-REC-12-05-10

    Article  CAS  Google Scholar 

  12. P. Metrangolo and G. Resnati, Science 321, 918 (2008). https://doi.org/10.1126/science.1162215

    Article  CAS  PubMed  Google Scholar 

  13. D. Braga, G. R. Desiraju, J. S. Miller, et al., CrystEngComm. 4, 500 (2002). https://doi.org/10.1039/B207466B

    Article  CAS  Google Scholar 

  14. P. Metrangolo, G. Resnati, T. Pilati, et al., Polym. Sci., Part A: Polym. Chem. 45, 1 (2006) 1–15. https://doi.org/10.1002/pola.21725

    Article  CAS  Google Scholar 

  15. X. Ding, M. Tuikka, and M. Haukka, Recent Advances in Crystallography, Ed. by J. B. Benedict (2012). https://doi.org/10.5772/48592

  16. T. Steiner, Angew. Chem. Int. Ed. 41, 48 (2002). https://doi.org/10.1002/1521-3773(20020104)41

    Article  CAS  Google Scholar 

  17. N. V. Belkova, L. M. Epstein, and O. A. Filippov, et al., Chem. Rev. 116, 8545 (2016). https://doi.org/10.1021/acs.chemrev.6b00091

    Article  CAS  PubMed  Google Scholar 

  18. E. V. Bartashevich and V. G. Tsirelson, Russ. Chem. Rev. 83, 1181 (2014). https://doi.org/10.1070/RCR4440

    Article  CAS  Google Scholar 

  19. G. Cavallo, P. Metrangolo, R. Milani, et al., Chem. Rev. 116, 2478 (2016). https://doi.org/10.1021/acs.chemrev.5b00484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Modern Charge-Density Analysis, Ed. by C. Gatti and P. Macchi (Springer, Dordrecht/Heidelberg/London/New York, 2012).

    Google Scholar 

  21. I. J. S. De Vlugt, M. J. Lecours, P. J. J. Carr, et al., J. Phys. Chem. A 122, 7051 (2018). https://doi.org/10.1021/acs.jpca.8b05750

    Article  CAS  PubMed  Google Scholar 

  22. A. Bondi, J. Phys. Chem. 68, 441 (1964). https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  23. A. Bondi, J. Phys. Chem. 70, 3006 (1966). https://doi.org/10.1021/j100881a503

    Article  CAS  Google Scholar 

  24. I. Tiritiris and T. Schleid, Z. Anorg. Allg. Chem. 629, 581 (2003). https://doi.org/10.1002/zaac.200390095

    Article  CAS  Google Scholar 

  25. V. V. Avdeeva, A. V. Vologzhanina, L. V. Goeva, et al. Inorg. Chim. Acta 428, 154 (2015). https://doi.org/10.1016/j.ica.2014.12.029

    Article  CAS  Google Scholar 

  26. K. Shelly, D. C. Finster, Y. J. Lee, et al., J. Am. Chem. Soc. 107, 5955 (1985). https://doi.org/10.1021/ja00307a021

    Article  CAS  Google Scholar 

  27. C. Hague, N. J. Patmore, C. G. Frost, et al., Chem. Commun. 21, 2286 (2001). https://doi.org/10.1039/B106719B

    Article  Google Scholar 

  28. Cunha-Silva, M.J. Carr, J.D. Kennedy, et al., Cryst. Growth Des. 13, 3162 (2013). https://doi.org/10.1021/cg4005328

  29. L. Pang, E. A. C. Lucken, and G. Bernardinelli, J. Am. Chem. Soc. 112, 8754 (1990). https://doi.org/10.1021/ja00180a018

    Article  CAS  Google Scholar 

  30. J. N. Latosinska, J. Pharm. Biomed. Anal. 38, 577 (2005). https://doi.org/10.1016/j.jpba.2005.03.030

    Article  CAS  PubMed  Google Scholar 

  31. J. N. Latosinska, Expert Opin. Drug Discovery 2, 225 (2007). https://doi.org/10.1517/17460441.2.2.225

    Article  CAS  Google Scholar 

  32. S. Limandri, C. Visňovezky, S. C. Perez, et al., Anal. Chem. 83, 1773 (2011). https://doi.org/10.1021/ac103106y

    Article  CAS  PubMed  Google Scholar 

  33. G. Wulfsberg, K. D. Parks, R. Rutherford, et al., Inorg. Chem. 41, 2032 (2002). https://doi.org/10.1021/ic010715i

    Article  CAS  PubMed  Google Scholar 

  34. G. Wulfsberg, E. Kravchenko, V. Morgunov, et al., Inorg. Chim. Acta 361, 2471 (2008). https://doi.org/10.1016/j.ica.2007.12.022.

  35. F. H. Herbstein, Cryst. Growth Des. 5, 2362 (2005). https://doi.org/10.1021/cg050165p

    Article  CAS  Google Scholar 

  36. C. H. Townes and B. P. Dailey, J. Chem. Phys. 17, 782 (1949). https://doi.org/10.1063/1.1747400

    Article  CAS  Google Scholar 

  37. B. P. Dailey and C. H. Townes, J. Chem. Phys. 23, 118 (1955). https://doi.org/10.1063/1.1740508

    Article  CAS  Google Scholar 

  38. A. Weiss, in Fortschr. Chem. Forsch. 30, 3 (1972).

    Google Scholar 

  39. Y. A. Buslaev, L. Kolditz, and E. A. Kravchenko, Nuclear Quadrupole Resonance in Inorganic Chemistry (VEB Deutscher Verlag der Wissenschaften, Berlin, 1987).

    Book  Google Scholar 

  40. Hyperfine Interactions & Nuclear Quadrupole Interactions (HFI/NQI), Ed. by S. Zhu, G. Zhang, F. Li, and D. Yuan (Springer, 2012).

    Google Scholar 

  41. E. A. Kravchenko, A. A. Gippius, A. A. Korlyukov, et al., Inorg. Chim. Acta 447, 22 (2016). https://doi.org/10.1016/j.ica.2016.03.025

    Article  CAS  Google Scholar 

  42. R. F. W. Bader, Atoms in Molecules—A quantum theory (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  43. Y. Huang and Ian S. Butler, Inorg. Chim. Acta 192, 7 (1992). https://doi.org/10.1016/S0020-1693(00)83165-5

    Article  Google Scholar 

  44. T. B. Brill, R. G. Gearhart, and W. A. Welsh, J. Magn. Res. 13, 27 (1974). https://doi.org/10.1016/0022-2364(74)90101-2

    Article  CAS  Google Scholar 

  45. T. B. Brill, J. Chem. Phys. 61, 424 (1974) 424. https://doi.org/10.1063/1.1681657

    Article  CAS  Google Scholar 

  46. R. Ikeda, A. Sasane, D. Nakamura, et al., J. Phys. Chem.70, 2926 (1966). https://doi.org/10.1021/j100881a034

    Article  CAS  Google Scholar 

  47. E. A. Kravchenko, A. A. Gippius, A. V. Vologzhanina, et al., Polyhedron 117, 561 (2016). https://doi.org/10.1016/j.poly.2016.06.016

    Article  CAS  Google Scholar 

  48. W. H. Knoth, H. C. Miller, J. C. Sauer, et al., Inorg. Chem. 3, 159 (1964). https://doi.org/10.1021/ic50012a002

  49. E. A. Kravchenko, A. A. Gippius, A. V. Vologzhanina, et al., Polyhedron 138, 140 (2017). https://doi.org/10.1016/j.poly.2017.09.022

    Article  CAS  Google Scholar 

  50. R. M. Sternheimer, Phys. Rev. 80, 102 (1950). https://doi.org/https://doi.org/10.1103/PhysRev.80.102.2

    Article  CAS  Google Scholar 

  51. R. M. Sternheimer, Phys. Rev. 130, 1423 (1963). https://doi.org/10.1103/PhysRev.130.1423

    Article  CAS  Google Scholar 

  52. R. M. Sternheimer, Phys. Rev. 146, 140 (1966). https://doi.org/10.1103/PhysRev.146.140

    Article  CAS  Google Scholar 

  53. T. B. Brill, Z. Z. Hugus, and A. F. Schreiner, Jr., J. Phys. Chem. 74, 469 (1970). https://doi.org/10.1021/j100698a001

    Article  CAS  Google Scholar 

  54. V. V. Avdeeva, E. A. Kravchenko, A. A. Gippius, et al., Polyhedron 127, 238 (2017). https://doi.org/10.1016/j.poly.2017.02.015

    Article  CAS  Google Scholar 

  55. V. V. Avdeevaa, E. A. Kravchenko, A. A. Gippius, et al., Inorg. Chim. Acta 487, 208 (2019). https://doi.org/10.1016/j.ica.2018.12.008

    Article  CAS  Google Scholar 

  56. E. A. Kravchenko, A. A. Gippius, I. N. Polyakova, et al., Z. Anorg. Allg. Chem. 643, 1939 (2017). https://doi.org/10.1002/zaac.201700293

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the State Assignment of the Kurnakov Institute RAS in the field of fundamental scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kravchenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, E.A., Gippius, A.A. & Kuznetsov, N.T. Noncovalent Interactions in Compounds Based on Perchlorinated Boron Cluster as Monitored by 35Cl NQR (Review). Russ. J. Inorg. Chem. 65, 546–566 (2020). https://doi.org/10.1134/S0036023620040105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620040105

Keywords:

Navigation