Skip to main content
Log in

Synthesis, Crystal Structure, and Nonlinear Optical Properties of Zn(II) Complex with 4,4',4''-Tri-tert-Butyl-2,2':6',2''-Terpyridine: A Dual Exploration

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The metal complexes are getting immense importance as hi-tech functional materials. In the present investigation, a new Zn(II) complex [Zn(C27H35N3)Cl2] (1) has been synthesized by using 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine ligand. The synthesized compound 1 is characterized by X-ray crystallography, IR spectroscopy as well as elemental analysis. The X-rays structure revealed that compound 1 crystallizes in trigonal space group P3221 in which Zn(II) atom is penta coordinated having highly distorted trigonal bipyramidal geometry. The compound 1 has a 2-fold rotational axis parallel to the b axis, which is passing through two opposite N and C atoms in the central pyridine ring, and the Zn atom. Moreover, quantum computational study has been performed to get insights into the optical and nonlinear optical response properties of compound 1. The geometrical structure of compound 1 has been optimized with M06-2X functional and LANL2DZ/6-311G** basis set and it shows good resemblance with the experimental coordinates. The linear polarizabilities including isotropic (αiso) and anisotropic (αaniso) polarizability amplitudes are found to be 69.44 × 10−24 and 34.99 × 10−24 esu, respectively. Similarly, the NLO polarizability (❬γ❭) amplitude for compound 1 is found to be 104.19 × 10–36 esu at M06-2X method, which is ~5 times greater than the p-NA (a model NLO molecule). Additionally, frontier molecular orbitals, molecular electrostatic potentials and Hirshfeld analysis are used to explore the structure-property relationship of compound 1. Thus, the indigenously synthesized compound 1 might be a reasonable candidate for its possible applications as optical and NLO material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. M. Feldt, E. A. Gibson, E. Gabrielsson, et al., J. Am. Chem. Soc. 132, 16714 (2010). https://doi.org/10.1021/ja1088869

    Article  CAS  PubMed  Google Scholar 

  2. M. Abrahamsson, H. Wolpher, O. Johansson, et al., Inorg. Chem. 44, 3215 (2005). https://doi.org/10.1021/ic048247a

    Article  CAS  PubMed  Google Scholar 

  3. S. Caramori, J. Husson, M. Beley, et al., Chem., Eur. J. 16, 2611 (2010). https://doi.org/10.1002/chem.200902761

    Article  CAS  Google Scholar 

  4. C. Bhaumik, S. Das, D. Saha, et al., Inorg. Chem. 49, 5049 (2010). https://doi.org/10.1021/ic100138s

    Article  CAS  PubMed  Google Scholar 

  5. V. Chaurin, E. C. Constable, and C. E. Housecroft, New J. Chem. 30, 1740 (2006). https://doi.org/10.1039/B610306E

    Article  CAS  Google Scholar 

  6. A. Winter, G. R. Newkome, and U. S. Schubert, Chem. Cat.Chem. 3, 1384 (2011). https://doi.org/10.1002/cctc.201100118

    Article  CAS  Google Scholar 

  7. U. Siemeling, J. Vor der Brüggen, U. Vorfeld, et al., Chem. Eur. J. 9, 2819 (2003). https://doi.org/10.1002/chem.200204412

    Article  CAS  PubMed  Google Scholar 

  8. H.-L. Xu, S.-L. Sun, S. Muhammad, et al., Theor. Chem. Acc. 128, 241 (2011). https://doi.org/10.1007/s00214-010-0837-0

    Article  CAS  Google Scholar 

  9. C.-J. Yao, Y.-W. Zhong, and J. Yao, J. Am. Chem. Soc. 133, 15697 (2011). https://doi.org/10.1021/ja205879y

    Article  CAS  PubMed  Google Scholar 

  10. L. S. Natrajan, A. Toulmin, A. Chew, et al., Dalton Trans., 39, 10837 (2010). https://doi.org/10.1039/C0DT00750A

    Article  CAS  PubMed  Google Scholar 

  11. A. Reynal and E. Palomares, Eur. J. Inorg. Chem., 4509 (2011). https://doi.org/10.1002/ejic.201100516

  12. C.-J. Yao, Y.-W. Zhong, H.-J. Nie, et al., J. Am. Chem. Soc. 133, 20720 (2011). https://doi.org/10.1021/ja209620p

    Article  CAS  PubMed  Google Scholar 

  13. R. C. Evans, P. Douglas, and C. J. Winscom, Coord. Chem. Rev. 250, 2093 (2006). https://doi.org/10.1016/j.ccr.2006.02.007

    Article  CAS  Google Scholar 

  14. B. N. Ghosh, S. Bhowmik, et al., Chem. Comm. 50, 734 (2014). https://doi.org/10.1039/C3CC47591C

    Article  CAS  PubMed  Google Scholar 

  15. D.-S. Leem, S. O. Jung, S.-O. Kim, et al., ‎J. Mater. Chem. 19, 8824 (2009). https://doi.org/10.1039/B915384E

    Article  CAS  Google Scholar 

  16. G. Raj, C. Swalus, A. Guillet, et al., Langmuir 29, 4388 (2013). https://doi.org/10.1021/la400055t

    Article  CAS  PubMed  Google Scholar 

  17. E. Busseron, Y. Ruff, E. Moulin et al., Nanoscale 5, 7098 (2013). https://doi.org/10.1039/C3NR02176A

    Article  CAS  PubMed  Google Scholar 

  18. S. Di Bella, Chem. Soc. Rev. 30, 355 (2001). https://doi.org/10.1039/B100820J

    Article  CAS  Google Scholar 

  19. T. Schneider, Nonlinear Optics in Telecommunications (Springer, Berlin/ Heidelberg, 2004. https://doi.org/10.1007/978-3-662-08996-5

  20. S. M. LeCours, H.-W. Guan, S. G. DiMagno, et al., J. Am. Chem. Soc. 118, 1497 (1996). https://doi.org/10.1021/ja953610l

    Article  Google Scholar 

  21. G. De La Torre, P. Vazquez, F. Agullo-Lopez, et al., J. Mater. Chem. 8, 1671 (1998). https://doi.org/10.1039/A803533D

    Article  CAS  Google Scholar 

  22. P. G. Lacroix, Eur. J. Inorg. Chem. 2001, 339 (2001). https://doi.org/10.1002/1099-0682(200102)2001:2<339::AID-EJIC339>3.0.CO;2-Z

  23. E. C. Constable, E. Figgemeier, C. E. Housecroft, et al., Dalton Trans. 67, 6552 (2008).

    Google Scholar 

  24. E. A. Medlycott and G. S. Hanan, Chem. Soc. Rev. 34, 133 (2005). https://doi.org/10.1039/B316486C

    Article  CAS  PubMed  Google Scholar 

  25. T. Ben Hadda and H. Le Bozec, Inorg. Chim. Acta 204, 103 (1993). https://doi.org/10.1016/S0020-1693(00)88119-0

    Article  CAS  Google Scholar 

  26. R. J. Batrice, V. N. Nesterov, and B. W. Smucker, Acta Cryst., Sect. E: Struct. Repts Online, 66, m1704 (2010). https://doi.org/10.1107/S1600536810048762

    Article  CAS  Google Scholar 

  27. S. Muhammad, S. Hussain, X. Chen, et al., Inorg. Chim. Acta. 494, 160 (2019). https://doi.org/10.1016/j.ica.2019.05.023

    Article  CAS  Google Scholar 

  28. S. Hussain, S. Muhammad, X. Chen, et al., Inorg. Chem. Commun. 107, 107450 (2019). https://doi.org/10.1016/j.inoche.2019.107450

    Article  CAS  Google Scholar 

  29. G. M. Sheldrick, SADABS, Version 2.01: Bruker/Siemens Area Detector Absorption Correction Program (Bruker, Madison, WI, 1998).

    Google Scholar 

  30. G. Sheldrick, Acta Crystallogr., Sect. A 64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  31. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 71, 3(2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  32. L. J. Farrugia, J. Appl. Crystallogr. 45, 849 (2012). https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  33. G. Wang and H. V. R. Dias, ‎Eur. J. Inorg. Chem. 46, 5507(2017). https://doi.org/10.1002/ejic.201701099

    Article  CAS  Google Scholar 

  34. V. S. Stafford, K. Suntharalingam, A. Shivalingam, et al., Dalton Trans. 44, 3686 (2015). https://doi.org/10.1039/C4DT02910K

    Article  CAS  PubMed  Google Scholar 

  35. Y. D. M. Champouret, J.-D. Maréchal, I. Dadhiwala, et al., Dalton Trans. 19, 2350 (2006). https://doi.org/10.1039/B516083A

    Article  Google Scholar 

  36. H. Suzuki, S. Matsumura, Y. Satoh, et al., React. Funct. Polym. 59, 253 (2004). https://doi.org/10.1016/j.reactfunctpolym.2004.03.002

    Article  CAS  Google Scholar 

  37. D. Reinen and C. Friebel, Inorg. Chem. 23, 791 (1984). https://doi.org/10.1021/ic00175a001

    Article  CAS  Google Scholar 

  38. A. W. Addison, T. N. Rao, J. Reedijk, et al., J. Chem. Soc., Dalton Trans. 7, 1349 (1984). https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  39. M. I. Arriortua, J. L. Mesa, T. Rojo, et al., Inorg. Chem. 27, 2976 (1988). https://doi.org/10.1021/ic00290a017

    Article  CAS  Google Scholar 

  40. R. J. Allenbaugh, A. L. Rheingold, and L. H. Doerrer, Dalton Trans. 7, 1155 (2009). https://doi.org/10.1039/B809894H

    Article  Google Scholar 

  41. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16 (Wallingford, CT, 2016).

  42. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008). https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  43. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985). https://doi.org/10.1063/1.448975

    Article  CAS  Google Scholar 

  44. D. Feller, J. Comput. Chem. 17, 1571 (1996). https://doi.org/10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P

    Article  CAS  Google Scholar 

  45. K. L. Schuchardt, B. T. Didier, T. Elsethagen, et al., J. Chem. Inf. Model. 47, 1045 (2007). https://doi.org/10.1021/ci600510j

    Article  CAS  PubMed  Google Scholar 

  46. B. J. Coe, S. Houbrechts, I. Asselberghs et al., Chem. Int. Ed. 38, 366 (1999). https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3<366::AID-ANIE366>3.0.CO;2-D

    Article  CAS  Google Scholar 

  47. B. J. Coe, Comprehensive Coordination Chemistry II (Elsevier, Pergamon, Oxford, 2004).

    Google Scholar 

  48. S. Muhammad, H. Xu, Y. Liao, Y. Kan, and Z. Su, J. Am. Chem. Soc., 131, 11833 (2009). https://doi.org/10.1021/ja9032023

    Article  CAS  PubMed  Google Scholar 

  49. S. Muhammad, T. Minami, H. Fukui, et al., J. Phys. Chem. A 116, 1417 (2012). https://doi.org/10.1021/jp209385b

    Article  CAS  PubMed  Google Scholar 

  50. T. Koopmans, Physica 1, 104 (1933). https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  CAS  Google Scholar 

  51. M.T. Baei, E.T. Lemeski, and A.Soltani, Russ. J. Inorg. Chem. 62, 325 (2017). https://doi.org/10.1134/S0036023617030044

    Article  CAS  Google Scholar 

  52. N. Fallah, Kh. Gholivand, M. Yousefi, et al., Russ. J. Inorg. Chem. 64, 557 (2019). https://doi.org/10.1134/S0036023619050061

    Article  Google Scholar 

  53. J. Wang, X. R. Wu, W. P. Wu, et al., Russ. J. Coord. Chem. 41, 321 (2015). https://doi.org/10.1134/S1070328415050085

    Article  CAS  Google Scholar 

  54. W. P. Wu, J. Wang, L. Lu, et al., Russ. J. Coord. Chem. 42, 71 (2016). https://doi.org/10.1134/S1070328416010085

    Article  CAS  Google Scholar 

  55. S. Chandran, R. Paulraj, and P. Ramasamy, J. Cryst. Growth 468, 68 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.006

    Article  CAS  Google Scholar 

  56. J. Mohan, Organic Spectroscopy: Principles and Applications (Narosa, New Delhi, 2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

X.C. acknowledges National Natural Science Foundation of China for drant nos. 21771057 and U1804253). S. Hussain is thankful to Henan Normal University for providing postdoctoral funding. The authors from King Khalid University are grateful to Deanship of Scientific Research of King Khalid University in Saudi Arabia for technical and financial support through grant number R.G.P.2/25/40.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajjad Hussain or Xuenian Chen.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjad Hussain, Muhammad, S., Chen, X. et al. Synthesis, Crystal Structure, and Nonlinear Optical Properties of Zn(II) Complex with 4,4',4''-Tri-tert-Butyl-2,2':6',2''-Terpyridine: A Dual Exploration. Russ. J. Inorg. Chem. 65, 368–377 (2020). https://doi.org/10.1134/S0036023620030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620030067

Keywords:

Navigation