Skip to main content
Log in

Complexes Ar3Sb[OC(O)C6HF4-2,3,4,5]2, Ar3Sb[OC(O)CF2Br]2, and Ar3Sb[OC(O)CF2CF2CF3]2 (Ar = C6H3OMe-2-Br-5): Synthesis, Structure, and Photochemical Properties

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The tris(5-bromo-2-methoxyphenyl)antimony complexes with 2,3,4,5-tetrafuorobenzoic, bromodifluoroacetic, and heptafluorobutyric acids have been synthesized by oxidative addition reactions and structurally characterized. According to X-ray diffraction data, the products of these reactions are triarylantimony dicarboxylates with the general formula (2-MeO-5-Br-C6H3)3Sb(OC(O)R)2, where R = C6HF4-2,3,4,5 (1), CF2Br (2), CF2CF2CF3 (3). The antimony atoms in molecules of complexes 13 have trigonal bipyramidal coordination with the oxygen atoms of carboxylate ligands in axial positions. The average lengths are 2.119 (1), 2.106 (2), and 2.109 Å (3) for equatorial Sb–C bonds and 2.112 (1), 2.104 (2), and 2.118 Å (3) for Sb–O bonds. The ОSbО angles are 177.5(2)° (1), 172.6(4)° (2), and 176.8(3)° (3), and the OSbC angles are 89.3(3)°–93.5(3)° (1), 84.4(5)°–97.0(5)° (2), and 84.2(3)°–98.9(3)° (3). The photocatalytic activity of the synthesized complexes has been studied using the photodestruction of organic dyes, namely, Methylene Blue and Methyl Violet as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. T. Iftikhar, M. K. Rauf, S. Sarwar, et al., J. Organomet. Chem. 851, 89 (2017). https://doi.org/10.1016/j.jorganchem.2017.09.002

    Article  CAS  Google Scholar 

  2. L. Yu, Y. Q. Ma, G. C. Wang, and J. S. Li, Heteroat. Chem. 15, 32 (2004). https://doi.org/10.1002/hc.10208

    Article  CAS  Google Scholar 

  3. L. Saleem, A. A. Altaf, A. Badshah, et al., Inorg. Chim. Acta 474, 148 (2018). https://doi.org/10.1016/j.ica.2018.01.036

    Article  CAS  Google Scholar 

  4. R. Mushtaq, M. K. Rauf, M. Bolte, et al., Appl. Organomet. Chem. 30, 1 (2016). https://doi.org/10.1002/aoc.3456

    Article  CAS  Google Scholar 

  5. R. Mushtaq, M. K. Rauf, M. Bond, et al., Appl. Organomet. Chem. 31, 1 (2015). https://doi.org/10.1002/aoc.3606

    Article  CAS  Google Scholar 

  6. A. Islam, J. G. Da Silva, and F. M. Berbet, Molecules 19, 6009 (2014). https://doi.org/10.3390/molecules19056009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. I. Ali, M. K. Rauf, A. Badshah, et al., J. Chem. Soc., Dalton Trans. 42, 16733 (2013). https://doi.org/10.1039/c3dt51382c

    Article  CAS  Google Scholar 

  8. Y. Q. Ma, L. Yu, and J. S. Li, Heteroat. Chem. 13, 299 (2002). https://doi.org/10.1002/hc.10033

    Article  CAS  Google Scholar 

  9. P. Sharma, D. Perez, A. Cabrera, et al., Acta Pharm. Sin. 29, 881 (2008). https://doi.org/10.1111/j.1745-7254.2008.00818.x

    Article  CAS  Google Scholar 

  10. S. Abdolmaleki, S. Yarmohammadi, N. Adib, et al., Polyhedron 159, 239 (2019). https://doi.org/10.1016/J.POLY.2018.11.063

    Article  CAS  Google Scholar 

  11. H. X. Qi, H. Jo, H. E. Lee, et al., J. Solid State Chem. 274, 69 (2019). https://doi.org/10.1016/J.JSSC.2019.03.018

    Article  CAS  Google Scholar 

  12. X. Y. Zhang, L. S. Cui, X. Zhang, et al., J. Mol. Struct. 1134, 742 (2017). https://doi.org/10.1016/j.molstruc.2017.01.039

    Article  CAS  Google Scholar 

  13. S. Agnihotri, P. Raj, and K. Singhal, Synt. React. Inorg. Met.-Org. Chem. 32, 449 (2002). https://doi.org/10.1081/SIM-120003788

    Article  CAS  Google Scholar 

  14. H. Geng, M. Hong, Y. Yang, et al., J. Coord. Chem. 68 2938 (2015). https://doi.org/10.1080/00958972.2015.1060322

    Article  CAS  Google Scholar 

  15. L. Wen, H. Yin, W. Li, et al., Inorg. Chim. Acta 363, 676 (2010). https://doi.org/10.1016/j.ica.2009.11.022

    Article  CAS  Google Scholar 

  16. L. Yu, Y. Q. Ma, R. C. Liu, et al., Polyhedron 23, 823 (2004). https://doi.org/10.1016/j.poly.2003.12.002

    Article  CAS  Google Scholar 

  17. R. N. Duffin, V. L. Blair, L. Kedzierski, et al., J. Chem. Soc., Dalton Trans. 47, 971 (2018). https://doi.org/10.1039/C7DT04171C

    Article  CAS  Google Scholar 

  18. V. V. Sharutin, V. S. Senchurin, O. K. Sharutina, et al., Russ. J. Gen. Chem. 82, 95 (2012). https://doi.org/10.1134/S1070363212010161

    Article  CAS  Google Scholar 

  19. V. V. Sharutin, O. K. Sharutina, R. V. Reshetnikova, et al., Russ. J. Inorg. Chem. 62, 1450 (2017). https://doi.org/10.1134/S003602361711016X

    Article  CAS  Google Scholar 

  20. V. V. Sharutin, V. S. Senchurin, O. K. Sharutina, et al., Russ. J. Inorg. Chem. 56, 1561 (2011). https://doi.org/10.1134/S0036023611100196

    Article  CAS  Google Scholar 

  21. SMART: Bruker Molecular Analysis Research Tool, Versions 5.625 (Bruker, Madison, WI, 2000).

  22. SAINTPlus: Data Reduction and Correction Program, Versions 6.02a (Bruker, Madison, WI, 2000).

  23. SHELXTL/PC: An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Versions 5.10 (Bruker, Madison, WI, 1998).

  24. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009).

    Article  CAS  Google Scholar 

  25. G. O. Doak, G. G. Long, and L. D. Freedman, J. Organomet. Chem. 4, 82 (1965). https://doi.org/10.1016/S0022-328X(0000)823700-0

    Article  CAS  Google Scholar 

  26. A. Gupta, R. K. Sharma, R. Bohra, et al., Polyhedron 21 (23), 2387 (2002). https://doi.org/10.1016/S0277-5387(02)01155-5

    Article  CAS  Google Scholar 

  27. V. V. Sharutin, V. S. Senchurin, O. K. Sharutina, et al., Russ. J. Coord. Chem. 37, 781 (2011). https://doi.org/10.1134/S1070328411090089

    Article  CAS  Google Scholar 

  28. V. V. Sharutin, O. K. Sharutina, V. S. Senchurin, and O. V. Chagarova, Russ. J. Gen. Chem. 82, 1665 (2012). https://doi.org/10.1134/S1070363212100064

    Article  CAS  Google Scholar 

  29. S. Tothadi, S. Joseph, and G. R. Desiraju, Cryst. Growth Des. 13, 3242 (2013). https://doi.org/10. 1021/cg400735f

    Article  CAS  Google Scholar 

  30. V. M. Muzalevskiy, A. M. Magerramov, and N. G. Shihaliev, et al., Russ. Chem. Bull. 65, 1541 (2016). https://doi.org/10.1007/s11172-016-1480-2

  31. J. A. Smith, M. A. Singh-Wilmot, K. P. Carter, et al., Cryst. Growth Des. 19, 305 (2019). https://doi.org/10.1021/acs.cgd.8b01426

    Article  CAS  Google Scholar 

  32. K. Shimizu and J. F. da Silva, Molecules 23, 2959 (2018). https://doi.org/10.3390/molecules23112959

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within state task no. 4.6151.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Artem’eva.

Additional information

Translated by E. Glushachenkova

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artem’eva, E.V., Sharutina, O.K., Sharutin, V.V. et al. Complexes Ar3Sb[OC(O)C6HF4-2,3,4,5]2, Ar3Sb[OC(O)CF2Br]2, and Ar3Sb[OC(O)CF2CF2CF3]2 (Ar = C6H3OMe-2-Br-5): Synthesis, Structure, and Photochemical Properties. Russ. J. Inorg. Chem. 65, 22–29 (2020). https://doi.org/10.1134/S0036023620010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620010039

Keywords:

Navigation