Skip to main content
Log in

Solid Solutions PdTe1– xBix (x < 0.8) with the NiAs Structure in the Pd–Bi–Te System

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Three solid solutions in the Pd–Bi–Te system were obtained by high-temperature ampoule synthesis from the elements at 700°C. The crystal structures of the solid solutions were determined using powder diffraction data by the full-profile Rietveld method. The solid solutions PdTe0.33Bi0.67 (a = 4.19816(8) Å, c = 5.6861(1) Å), PdTe0.5Bi0.5 (a = 4.18888(9) Å, c = 5.6778(1) Å), and PdTe0.67Bi0.33 (a = 4.17796(8) Å, c = 5.6733(1) Å) belong to the PdTe1 – xBix series: the structures of compounds are based on the statistical substitution of Bi atoms for Te atoms in the PdTe structure (NiAs type, hexagonal system, space group P63/mmc). The concentration limit for substitution in the PdTe1 – xBix series of solid solutions is in the 0.67 < x < 0.8 range. Band structure calculations demonstrate the metallic nature for all compounds and similar electronic structures for PdTe, PdTe1– xBix, and PdBi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. N. Kuznetsov, E. A. Stroganova, A. A. Serov, et al., J. Alloys Compd. 696, 413 (2017). https://doi.org/10.1016/j.jallcom.2016.11.292

    Article  CAS  Google Scholar 

  2. A. N. Kuznetsov and A. A. Serov, Eur. J. Inorg. Chem. 3, 373 (2016). https://doi.org/10.1002/ejic.201501197

    Article  CAS  Google Scholar 

  3. A. A. Isaeva, A. I. Baranov, Th. Doert, et al., Russ. Chem. Bull. 56, 1694 (2007). https://doi.org/10.1007/s11172-007-0263-1

    Article  CAS  Google Scholar 

  4. A. A. Isaeva, A. I. Baranov, L. Kloo, et al., Solid State Sci. 11, 1071 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.03.005

    Article  CAS  Google Scholar 

  5. A. I. Baranov, A. A. Isaeva, L. Kloo, et al., Inorg. Chem. 42, 6667 (2003). https://doi.org/10.1021/ic034349+

    Article  CAS  Google Scholar 

  6. A. I. Baranov, A. A. Isaeva, L. Kloo, et al., J. Solid State Chem. 177, 3616 (2004). https://doi.org/10.1016/j.jssc.2004.05.061

    Article  CAS  Google Scholar 

  7. T. K. Reynolds, J. G. Bales, and F. J. DiSalvo, Chem. Mater. 14, 4746 (2002). https://doi.org/10.1021/cm020585r

    Article  CAS  Google Scholar 

  8. E. Yu. Zakharova, S. M. Kazakov, A. A. Isaeva, et al., J. Alloys Compd. 589, 48 (2014). https://doi.org/10.1016/j.jallcom.2013.11.172

    Article  CAS  Google Scholar 

  9. E. Yu. Zakharova, N. A. Andreeva, S. M. Kazakov, et al., J. Alloys Compd. 621, 307 (2015). https://doi.org/10.1016/j.jallcom.2014.09.180

    Article  CAS  Google Scholar 

  10. E. Yu. Zakharova, S. M. Kazakov, A. Götze, et al., J. Solid State Chem. 265, 266 (2018). https://doi.org/10.1016/j.jssc.2018.06.012

    Article  CAS  Google Scholar 

  11. F. Laufek, A. Vymazalová, M. Drábek, et al., Solid State Sci. 14, 1476 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.08.019

    Article  CAS  Google Scholar 

  12. A. Götze, J. M. Sander, and H. Kohlmann, Z. Naturforsch. 71, 503 (2016). https://doi.org/10.1515/znb-2016-0003

    Article  Google Scholar 

  13. M. El-Boragy and K. Schubert, Z. Metallkd. 61, 579 (1970).

    CAS  Google Scholar 

  14. S. V. Savilov, A. N. Kuznetsov, B. A. Popovkin, et al., Z. Anorg. Allg. Chem. 631, 293 (2005). https://doi.org/10.1002/zaac.200400264

    Article  CAS  Google Scholar 

  15. E. Yu. Zakharova, A. V. Churakov, Th. Doert, et al., Eur. J. Inorg. Chem. 2013, 6164 (2013). https://doi.org/10.1002/ejic.201300970

    Article  CAS  Google Scholar 

  16. O. N. Litvinenko, A. N. Kuznetsov, A. V. Olenev, et al., Russ. Chem. Bull. 56, 1945 (2007). https://doi.org/10.1007/s11172-007-0301-z

    Article  CAS  Google Scholar 

  17. T. K. Reynolds, R. F. Kelley, and F. J. DiSalvo, J. Alloys Compd. 366, 136 (2004). https://doi.org/10.1016/j.jallcom.2003.07.008

    Article  CAS  Google Scholar 

  18. H.-J. Deiseroth, K. Aleksandrov, C. Reiner, et al., Eur. J. Inorg. Chem. 2006, 1561 (2006). https://doi.org/10.1002/ejic.200501020

    Article  CAS  Google Scholar 

  19. A. A. Isaeva, O. N. Makarevich, A. N. Kuznetsov, et al., Eur. J. Inorg. Chem. 9, 1395 (2010). https://doi.org/10.1002/ejic.200901027

    Article  CAS  Google Scholar 

  20. T. Dankwort, V. Duppel, H. -J. Deiseroth, et al., Semicond. Sci. Technol. 31, 094001 (2016). https://doi.org/10.1088/0268-1242/31/9/094001

    Article  CAS  Google Scholar 

  21. A. N. Kuznetsov, E. A. Stroganova, E. Yu. Zakharova, et al., J. Solid State Chem. 250, 90 (2017). https://doi.org/10.1016/j.jssc.2017.03.020

    Article  CAS  Google Scholar 

  22. G. I. Makovetskii and G. M. Shaklevich, Izv. Akad. Nauk SSSR, Neorg. Mater. 18, 186 (1982).

    Google Scholar 

  23. O. N. Il’ninskaya and Yu. B. Kuzina, Russ. J. Inorg. Chem. 35, 1104 (1990).

    Google Scholar 

  24. S. Furuset and H. Fjellvag, Acta Chem. Scand. A 39, 537 (1985). https://doi.org/10.3891/acta.chem.scand.39a-0537

    Article  Google Scholar 

  25. O. N. Il’nitskaya, Yu. N. Grin’, and Yu. B. Kuz’ma, Kristallografiya 37, 147 (1992).

    Google Scholar 

  26. S. V. Orishchin and Yu. B. Kuz’ma, Neorg. Mater. 31, 423 (1995).

    Google Scholar 

  27. M. El-Boragy and K. Schubert, Z. Metallkd. 62, 314 (1971).

    CAS  Google Scholar 

  28. E. Yu. Zakharova, A. A. Isaeva, A. N. Kuznetsov, et al., Russ. Chem. Bull. 60, 440 (2011). https://doi.org/10.1007/s11172-011-0069-z

    Article  CAS  Google Scholar 

  29. TOPAS V3, General Profile and Structure Analysis Software for Powder Diffraction Data, User’s Manual, Bruker, AXS, Karlsruhe, Germany, 2003.

  30. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). http://jp-minerals.org/vesta/en/download.htmlhttps://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  31. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter. 59, 1758 (1999).

    Article  CAS  Google Scholar 

  32. G. Kresse and J. Furthmüller, Vienna Ab-initio Simulation Package (VASP), V. 5.4.4. http://vasp.at

  33. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, et al., Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  CAS  PubMed  Google Scholar 

  34. H. J. Monckhorst and J. D. Pack, Phys. Rev. B: Condens. Matter 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  35. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, New York, 1990). https://doi.org/10.1126/science.252.5012.1566

    Google Scholar 

  36. G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  37. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204

    Article  CAS  Google Scholar 

  38. M. Yu and D. R. Trinkle, J. Chem. Phys. 134, 064111 (2011). https://doi.org/10.1063/1.3553716

    Article  CAS  PubMed  Google Scholar 

  39. wxDragon 2.1.6. http://www.wxdragon.de

  40. Y. C. Bhatt and K. Schubert, J. Less-Common Met. 64, 17 (1979). https://doi.org/10.1016/0022-5088(79)90184-X

    Article  Google Scholar 

  41. A. Vymazalová, P. Ondrus, and M. Drábek, Mineral Deposit Research: Meeting the Global Challenge (Springer, Berlin, 2005), p. 1439. https://doi.org/10.1007/3-540-27946-6_366

    Chapter  Google Scholar 

  42. M. A. Kareva, E. G. Kabanova, G. P. Zhmurko, et al., Russ. J. Inorg. Chem. 57, 502 (2012). https://doi.org/10.1134/S0036023612030114

    Article  CAS  Google Scholar 

  43. H. Zhang, C.-X. Liu, X.-L. Qi, et al., Nature Phys. 5, 438 (2009). https://doi.org/10.1038/nphys1270

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Funding

This work was supported by the Russian Science Foundation (project no. 17-73-10492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Zakharova.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, E.Y., Makhaneva, A.Y., Kazakov, S.M. et al. Solid Solutions PdTe1– xBix (x < 0.8) with the NiAs Structure in the Pd–Bi–Te System. Russ. J. Inorg. Chem. 64, 1486–1493 (2019). https://doi.org/10.1134/S0036023619120192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619120192

Keywords:

Navigation