Skip to main content
Log in

Synthesis and characterization of Bi1−xNdxFeO3 (0 ≤ x ≤ 0.3) prepared by thermal decomposition of Bi1−xNdx[Fe(CN)6]·4H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The series of polycrystalline heteronuclear complexes, Bi1−xNdx[Fe(CN)6]·4H2O (0 ≤ x ≤ 0.3), was successfully synthesized and characterized, by means of powder X-ray diffraction (PXRD) and infrared spectroscopy. The thermal behaviour was studied by thermogravimetric and differential thermal analysis. The crystal structure of the complexes was refined by Rietveld analysis. It was found that they crystallized in the orthorhombic crystal system, space group Cmcm. The lattice parameters and unit cell volume decrease with an increase in Nd concentration. In order to obtain the oxides Bi1−xNdxFeO3, the thermal decomposition of the inorganic complexes, Bi1−xNdx[Fe(CN)6]·4H2O, has been investigated. By Rietveld analysis of PXRD data, the synthesis of the oxides was confirmed, evidencing in the series, a gradual change in crystal structure from rhombohedra to triclinic. Furthermore, with an increase in Nd content in Bi1−xNdxFeO3 oxides, impurity phases, such as Bi2O3, Bi2Fe4O9 and Bi25FeO39 associated with the synthesis of BiFeO3, are reduced. The morphology and chemical composition were investigated by microscopy electronic scattering and energy-dispersive X-ray spectroscopy. The electrical and magnetic properties have been determined to characterize the obtained oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hill NA, Filippetti A. Why are there any magnetic ferroelectrics? J Magn Magn Mater. 2002;242(245):976–9.

    Article  Google Scholar 

  2. Hur N, Park S, Sharma PA, Ahn JA, Guha S, Cheong SW. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature. 2004;429:392–5.

    Article  CAS  Google Scholar 

  3. Sosnowka I, Neumair TP. Spiral magnetic ordering in bismuth ferrite. J Phys C: Solid State Phys. 1982;15:4835–46.

    Article  Google Scholar 

  4. Kaczmarek W, Pajak Z. Differential thermal analysis of phase transitions in Bi1−x LaxFeO3 solid solution solid. State Commun. 1975;17:807–10.

    Article  CAS  Google Scholar 

  5. Khodabakhsh M, Sen C, Kassaf H, Gulgun MA, Misirlioglu IB. Strong smearing and disappearance of phase transitions into polar phases due to inhomogeneous lattice strains induced by A-site doping in Bi1−x AxFeO3 (A: La, Sm, Gd). J Alloys Comp. 2014;604:117–29.

    Article  CAS  Google Scholar 

  6. Pikula T, Dzik J, Lisinska-Czekaj A, Czekaj D, Jartych E. Structure and hyperfine interactions in Bi1−x NdxFeO3 solid solutions prepared by solid-state sintering. J Alloys Comp. 2014;606:1–6.

    Article  CAS  Google Scholar 

  7. Luo L, Wei W, Yuan X, Shen K, Xu M, Xu Q. Multiferroic properties of Y-doped BiFeO3. J Alloys Comp. 2012;540:36–8.

    Article  CAS  Google Scholar 

  8. James Vineetha, Prabhakar Rao P, Sameera S, Divya S. Multiferroic based reddish brown pigments: Bi1−x MxFeO3 (M=Y and La) for coloring applications. Ceram Int. 2014;40:2229–35.

    Article  CAS  Google Scholar 

  9. Sharma P, Varshney D, Satapathy S, Gupta PK. Effect of Pr substitution on structural and electrical properties of BiFeO3 ceramics. Mater Chem Phys. 2014;143–2:629–36.

    Article  Google Scholar 

  10. Dutta PD, Mandal BP, Naik R, Lawes G, Tyagi AK. Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J Phys Chem. 2013;117:2382–9.

    CAS  Google Scholar 

  11. Wu YJ, Chen XK, Zang J, Chen XJ. Magnetic enhancement across a ferroelectric-antiferroelectric phase boundary in Bi1−x NdxFeO3. J Appl Phys. 2012;111:053927–32.

    Article  Google Scholar 

  12. Kumar N, Panwar N, Gahtori B, Singh N, Kishan H, Awana VPS. Structural dielectric and magnetic properties of Pr substituted Bi1−x PrxFeO3 (0 ≤ x ≤ 0.15). J Alloys Comp. 2010;501:129–32.

    Article  Google Scholar 

  13. Chen Z, Hu J, Lu Z, He X. Low-temperature preparation of lanthanum-doped BiFeO3 crystallites by a sol-gel-hydrothermal method. Ceram Int. 2011;37:2359–64.

    Article  CAS  Google Scholar 

  14. Navarro MC, Lagarrigue MC, De Paoli JM, Carbonio RE, Gómez MI. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102:655–60.

    Article  CAS  Google Scholar 

  15. Chen DG, Tang XG, Liu QX, Cheng XF, Zou Y. The Nd-doping effect on dielectric abnormity of BiFeO3 ceramics below the Néel temperature. Mater Sci Forum. 2011;687:439–46.

    Article  CAS  Google Scholar 

  16. Kumar A, Varshney D. Crystal structure refinement of Bi1−x NdxFeO3 multiferroic by the Rietveld method. Ceram Int. 2012;38:3935–42.

    Article  CAS  Google Scholar 

  17. Navarro MC, Pannunzio-Miner EV, Pagola S, Gómez MI, Carbonio RE. Structural refinement of Nd[Fe(CN)6]·4H2O and study of NdFeO3 obtained by its oxidative thermal decomposition at very low temperatures. J Solid State Chem. 2005;178:847–54.

    Article  CAS  Google Scholar 

  18. Gil DM, Navarro MC, Lagarrigue MC, Guimpel J, Carbonio RE, Gómez MI. Crystal structure refinement, spectroscopic study and magnetic properties of yttrium hexacyanoferrate(III). J Mol Struct. 2011;1003:129–33.

    Article  CAS  Google Scholar 

  19. Gil DM, Navarro MC, Lagarrigue MC, Guimpel J, Carbonio RE, Gómez MI. Synthesis and structural characterization of perovskite YFeO3 by thermal decomposition of a cyano complex precursor, Y[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2011;103:889–96.

    Article  CAS  Google Scholar 

  20. Gil DM, Guimpel J, Paesano A, Carbonio RE, Gómez MI. Y[Fe1−xCox(CN)6]·4H2O (0 ≤ x ≤ 1) solid solutions: synthesis, crystal structure, thermal decomposition and spectroscopic and magnetic properties. J Mol Struct. 2012;1015:112–7.

    Article  CAS  Google Scholar 

  21. Seto Y, Umemoto K, Arii T, Masuda Y. Synthesis and thermal decomposition of lanthanide hexacyanochromate(iii) complexes, Ln[Cr(CN)6]·nH2O (Ln = La-Lu; n = 3, 4). J Therm Anal Calorim. 2004;76:166–77.

    Article  Google Scholar 

  22. Sawano R, Masuda Y. Studies on synthesis and magnetic property of LnxEu1−xCoO3 (Ln = Gd, Ho; x = 0 ~ 1) prepared by means of thermal decomposition of LnxEu1−x[Co(CN)6nH2O (Ln = Gd, Ho; x = 0 ~ 1). J Therm Anal Calorim. 2008;92:413–8.

    Article  CAS  Google Scholar 

  23. Medina Córdoba L, Echeverria G, Piro O, Gómez MI. Ammonium, barium hexacyanoferrate(II) trihydrate: synthesis, crystal structure, thermal decomposition and spectroscopic study. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4492-5.

    Google Scholar 

  24. Kumar Swamy N, Pavan Kumar N, Venugopal Reddy P, Gupta M, Shanmukharao Samatham S, Venkateshwarulu D, Ganesan V, Malik V, Das BK. Specific heat and magnetocaloric effect studies in multiferroic YMnO3. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-4223-3.

    Google Scholar 

  25. Young RA. The Rietveld method. Oxford: Oxford Scientifics Publications; 1995.

    Google Scholar 

  26. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B. 1993;192:55–69.

    Article  CAS  Google Scholar 

  27. Mullica DF, Perkins HO, Sappenfield EL. Synthesis, spectroscopic studies, and crystal and molecular structure of bismuth hexacyanoferrate(III) tetrahydrate, Bi[Fe(CN)6]·4H2O. Inorg Chim Acta. 1988;142:9–12.

    Article  CAS  Google Scholar 

  28. Sosnowska I, Schaefer W, Kockelmann W, Andeersen KH, Toyanchuk IO. Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese. Appl Phys A. 2002;74:1040–2.

    Article  Google Scholar 

  29. Gil DM, Carbonio RE, Gómez MI. Crystal structure refinement and vibrational analysis of Y[Co(CN)6]·4H2O and its thermal decomposition products. J Mol Struct. 2013;1041:23–8.

    Article  CAS  Google Scholar 

  30. West AR. Solid state chemistry and its applications. New York: Wiley; 1994.

    Google Scholar 

  31. Saleh Medina LM, Guillermo AJ, Negri RM. Structural, dielectric and magnetic properties of Bi1−x Y x FeO3 (0 ≤ x ≤ 0.2) obtained by acid–base co-precipitation. J Alloys Comp. 2014;592:306–12.

    Article  Google Scholar 

  32. Kadomtseva AM, Popov YF, Pytakov AP, Vorob’ev GP, Zvezdin AK, Viehlands D. Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail. Phase Transit. 2006;79:1019–42.

    Article  CAS  Google Scholar 

  33. Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS. Sie-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 2007;7:766–72.

    Article  CAS  Google Scholar 

  34. Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett. 2004;84:1731–3.

    Article  CAS  Google Scholar 

  35. Yu B, Li M, Guo D, Pei L, Zhao X. Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J Phys D Appl Phys. 2008;41:065003.

    Article  Google Scholar 

Download references

Acknowledgements

G. J. and R. M. N. thank CONICET, FONCYT for PICT 2011-0377 and PICT-2012-0717, and UBACyT for projects 2002 01101 00098 and 2002 201001 00142. L. M. S. M. thanks CONICET for fellowship. M. C. N. and M. I. G. thank CIUNT for financial support, Project 26D-428 and 26D-517. The authors thank Laboratorio de Bajas Temperaturas (UBA) for magnetic measurements and the Center of Advanced Microscopy (CMA-UBA) for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Gómez.

Additional information

G. Jorge and R. M. Negri are members of the Research Career of CONICET.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, M.C., Jorge, G., Negri, R.M. et al. Synthesis and characterization of Bi1−xNdxFeO3 (0 ≤ x ≤ 0.3) prepared by thermal decomposition of Bi1−xNdx[Fe(CN)6]·4H2O. J Therm Anal Calorim 122, 73–80 (2015). https://doi.org/10.1007/s10973-015-4669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4669-y

Keywords

Navigation