Skip to main content
Log in

Specific features of the crystal and local structures of compounds formed in the Dy2O3–HfO2 system

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The crystal and local structures of compounds formed in the Dy2O3–HfO2 system (at molar ratios from 1: 3 to 3: 1) in the course of isothermal annealing of X-ray amorphous mixed hydroxides at temperatures up to 1600°C have been studied. At the molar ratio Dy2O3: HfO2 from 1: 3 to 1: 1, crystallization leads to formation of single-phase defect fluorite solid solutions nDy2O3mHfO2 with clearly pronounced nonequivalence of parameters of local environment of Dy3+ and Hf4+ cations. It has been found that Dy2H2O7 (Dy2O3: HfO2 = 1: 2) samples have a tendency to pyrochlore-type ordering in both the cationic and anionic sublattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).

    Article  CAS  Google Scholar 

  2. P. A. Arsen’ev, V. B. Glushkova, A. A. Evdokimov, et al., Rare Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  3. W. Pan, S. R. Phillpot, C. Wan, et al., MRS Bull. 32, 917 (2012).

    Article  Google Scholar 

  4. N. P. Simonenko, K. A. Sakharov, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 60, 1452 (2015).

    Article  CAS  Google Scholar 

  5. A. V. Shlyakhtina and L. G. Shcherbakova, Russ. J. Electrochem. 48, 1 (2012).

    Article  CAS  Google Scholar 

  6. D. Pakhare, D. Haynes, D. Shekhawat, et al., Appl. Petrochem. Res. 2, 27 (2012).

    Article  CAS  Google Scholar 

  7. V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater. 355, 163 (2006).

    Article  CAS  Google Scholar 

  8. R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004).

    Article  CAS  Google Scholar 

  9. J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).

    Article  CAS  Google Scholar 

  10. V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 58, 1400 (2013).

    Article  CAS  Google Scholar 

  11. J. Emsley, The Elements (Oxford Univ., Oxford, 1998; Mir, Moscow, 1993).

    Google Scholar 

  12. E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008).

    Article  CAS  Google Scholar 

  13. C. R. Stanek and R. W. Grimes, J. Am. Ceram. Soc. 85, 2139 (2002).

    Article  CAS  Google Scholar 

  14. X. T. Zu, N. Li, and F. Gao, J. Appl. Phys. 104, 043517 (2008).

    Article  Google Scholar 

  15. B. P. Mandal, N. Garg, and S. M. Sarma, J. Solid State Chem. 179, 1990 (2006).

    Article  CAS  Google Scholar 

  16. V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 60, 16 (2015).

    Article  CAS  Google Scholar 

  17. A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).

    Article  Google Scholar 

  18. V. Petricek, M. Dusek, and L. Palatinus, Jana 2006, The Crystallographic Computing System, Inst. of Physics, Prague, 2006.

    Google Scholar 

  19. X. Qiu, J. W. Thompson, and S. J. L. Billinge, J. Appl. Crystallogr. 37, 678 (2004).

    Article  CAS  Google Scholar 

  20. C. L. Farrow, P. Juhos, J. W. Liu, et al., J. Phys.: Condens. Matter 19, 335219 (2007).

    CAS  Google Scholar 

  21. K. V. Klementev, J. Phys. D: Appl. Phys. 34, 209 (2001).

    Article  CAS  Google Scholar 

  22. M. Newville, J. Synchrotron Rad. 8, 322 (2001).

    Article  CAS  Google Scholar 

  23. J. J. Rehr, J. J. Kas, M. P. Prange, et al., Compt. Rend. Phys. 10, 548 (2009).

    Article  CAS  Google Scholar 

  24. V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 58, 331 (2013).

    Article  CAS  Google Scholar 

  25. E. Reynolds, P. E. R. Blanchard, J. Brendan, B. J. Kennedy, et al., Inorg. Chem. 52, 8409 (2013).

    Article  CAS  Google Scholar 

  26. V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 59, 279 (2014).

    Article  CAS  Google Scholar 

  27. F. N. Sayed, V. Grover, K. Bhattacharyya, et al., Inorg. Chem. 50, 2354 (2011).

    Article  CAS  Google Scholar 

  28. P. E. R. Blanchard, S. Liu, D. J. Kennedy, et al., J. Phys. Chem. 117, 2266 (2013).

    CAS  Google Scholar 

  29. L. Minervini, R. W. Grimes, and K. E. Sickafus, J. Am. Ceram. Soc. 83, 1873 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Original Russian Text © V.V. Popov, A.P. Menushenkov, Ya.V. Zubavichus, A.A. Yaroslavtsev, D.S. Leshchev, E.S. Kulik, A.A. Yastrebtsev, A.A. Pisarev, S.A. Korovin, N.A. Tsarenko, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 9, pp. 1192–1200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Menushenkov, A.P., Zubavichus, Y.V. et al. Specific features of the crystal and local structures of compounds formed in the Dy2O3–HfO2 system. Russ. J. Inorg. Chem. 61, 1135–1143 (2016). https://doi.org/10.1134/S0036023616090175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616090175

Navigation