Skip to main content
Log in

Electronic structure of a gold nanotube

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure of a gold nanotube has been studied by quantum-chemical methods. The energy dependences of total and partial densities of states of a nanotube with 16 atoms in a translational unit cell have been calculated by the linearized augmented-cylindrical-wave method. It has been demonstrated that the nanotube has a metal-like band structure. The s(Au) states are located completely in the valence band and are not involved in electron transport. The Fermi level is located at the peak of the total and partial d(Au) densities of states, which should contribute to the high electron tunneling conductance of the system. The valence band width is 11 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Yarzhemsky and C. Battocchio, Russ. J. Inorg. Chem. 56, 1 (2011).

    Article  Google Scholar 

  2. M. Haruta, Nature 437, 1098 (2005).

    Article  CAS  Google Scholar 

  3. M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).

    Article  CAS  Google Scholar 

  4. C. Burda, X. B. Chen, R. Narayanan, et al., Chem. Rev. 105, 5562 (2005).

    Article  Google Scholar 

  5. G. J. Hutchings and A. S. K. Hashmi, Angew. Chem., Int. Ed. Engl. 45, 7896 (2006).

    Article  Google Scholar 

  6. W. Szczerba, M. Radtke, U. Reinholz, et al., Radiat. Phys. Chem. (2011). doi:10.1016/j.radphyschem.2011.02.003.

    Google Scholar 

  7. A. I. Yanson, R. G. Bollinger, H. E. Brom, et al., Nature 395, 783 (1998).

    Article  CAS  Google Scholar 

  8. Y. Kondo and K. Takayanagi, Science 289, 606 (2000).

    Article  CAS  Google Scholar 

  9. C. R. Bridges, P. M. DiCarmine, A. Fokina, et al., J. Mater. Chem. A 1, 1127 (2013).

    Article  CAS  Google Scholar 

  10. Y. Bi, Nanotecnology 19, 275306 (2008).

    Article  Google Scholar 

  11. A. Roy, T. Pandey, N. Ravishankar, et al., AIP Adv. 3, 032131 (2013).

    Article  Google Scholar 

  12. S. Bulusu and X. C. Zeng, J. Chem. Phys. 125, 154303 (2006).

    Article  Google Scholar 

  13. H. Hakkinen, M. Moseler, and U. Landman, Phys. Rev. Lett. 89, 033401 (2002).

    Article  Google Scholar 

  14. H. Hakkinen, M. Moseler, and U. Landman, Phys. Rev. B 62, R2287 (2002).

    Article  Google Scholar 

  15. S. Gilb, K. Jacobsen, D. Schooss, et al., J. Chem. Phys. 121, 4619 (2004).

    Article  CAS  Google Scholar 

  16. S. Lecoultre, A. Rydlo, C. Felix, et al., J. Chem. Phys. 134, 074302 (2011).

    Article  CAS  Google Scholar 

  17. A. Sekiyama, J. Yamaguchi, M. Higashiya, et al., New J. Phys. 12, 043045 (2010).

    Article  Google Scholar 

  18. C. Cleveland and U. Landman, J. Chem. Phys. 94, 7376 (1991).

    Article  CAS  Google Scholar 

  19. L. D. Marks, Philos. Mag. 49, 81 (1984).

    Article  CAS  Google Scholar 

  20. P. D. Jadzinsky, G. Calero, C. J. Ackerson, et al., Science 318, 430 (2007).

    Article  CAS  Google Scholar 

  21. F. Vitale, R. Vitaliano, C. Battocchio, et al., Nanoscale Res. Lett. 3, 461 (2008).

    Article  CAS  Google Scholar 

  22. J. Li, X. Li, H. J. Zhai, et al., Science 299, 864 (2003).

    Article  CAS  Google Scholar 

  23. V. G. Yarzhemsky, Yu. V. Norov, S. V. Murashov, et al., Inorg. Mater. 46, 924 (2010).

    Article  CAS  Google Scholar 

  24. J. Oviedo and R. E. Palmer, J. Chem. Phys. 117, 9548 (2002).

    Article  CAS  Google Scholar 

  25. P. Pyykko and N. Runeberg, Angew. Chem., Int. Ed. Engl. 41, 2174 (2002).

    Article  CAS  Google Scholar 

  26. X. Li, B. Kiran, J. Li, et al., Angew. Chem., Int. Ed. 41, 4786 (2002).

    Article  CAS  Google Scholar 

  27. M. P. Johansson, D. Sudholm, and J. Vaara, Angew. Chem., Int. Ed. Engl. 43, 2678 (2004).

    Article  CAS  Google Scholar 

  28. A. Karttunen, M. Linnolahti, T. A. Pakkanen, et al., Chem. Commun., 465 (2008).

    Google Scholar 

  29. V. G. Yarzhemsky, G. Polzonetti, M. V. Russo, et al., Sci. Technol. Ind. 1, 66 (2011).

    Google Scholar 

  30. F. Tielens and E. Santos, J. Phys. Chem. C 114, 9452 (2010).

    Article  Google Scholar 

  31. A. H. Pakiari and Z. Jamshidi, J. Phys. Chem. A 114, 9212 (2010).

    Article  CAS  Google Scholar 

  32. E. P. D’yachkov, L. O. Khoroshavin and I. A. Bochkov, et al., Russ. J. Inorg. Chem. 59, 683 (2014).

    Article  Google Scholar 

  33. I. A. Bochkov, E. P. D’yachkov, and P. N. D’yachkov, Russ. J. Inorg. Chem. 59, 1454 (2014).

    Article  CAS  Google Scholar 

  34. P. D’yachkov and D. Kutlubaev, Mater. Sci. Eng. 38, 012003 (2012).

    Google Scholar 

  35. P. N. D’yachkov, D. Z. Kutlubaev, and D. V. Makaev, Phys. Rev. 82, 035426.

  36. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 76, 195411 (2007).

    Article  Google Scholar 

  37. P. N. D’yachkov and V. A. Zaluev, J. Phys. Chem. C 118, 2799 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. D’yachkov.

Additional information

Original Russian Text © P.N. D’yachkov, 2015, published in Zhurnal Neorganicheskoi Khimii, 2015, Vol. 60, No. 8, pp. 1045–1047.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yachkov, P.N. Electronic structure of a gold nanotube. Russ. J. Inorg. Chem. 60, 947–949 (2015). https://doi.org/10.1134/S0036023615080070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023615080070

Keywords

Navigation