Skip to main content
Log in

Does Islander Invasive Fish Species Acquire Genetic Variation? The Case of Gökçeada Island, the Westernmost Part of Turkey

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Geographical barriers to invasive species dispersion are being acceleratingly annihilated by human actions through deliberately or accidentally introductions as species were translocated of their region to the new environment across the world. Molecular markers could be useful to comprehend invasion scenarios of non-native species within this context. The aim of this study was to elucidate genetic diversity and dispersal patterns of non-native species (Carassius gibelio, Gambusia holbrooki and Pseudorasbora parva) from the westernmost part of Turkey, Gökçeada Island using mitochondrial COI marker. The present results discover three main findings: (i) a total of 13 haplotypes from COI was detected of which 11 were unique; (ii) high genetic diversity was determine for all non-native species (h = 0.680 and π = 0.0023 for C. gibelio, h = 0.776 and π = 0.0027 for G. holbrooki, and h = 0.479 and π = 0.0262 for P. parva); (iii) non-native species may have entered Turkey first from over Europe (i.e., invasive zone) after being introduced from their native distribution areas and then into Gökçeada Island from the mainland (i.e., Anatolia) through common stocking practices. The results of the present study indicated that non-native species were translocated or still being introduced to the Island. If the findings of this study are evaluated by public associations, the management activities can be better arranged on non-native species for the Island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abell, R., Allan, J.D., and Lehner, B., Unlocking the potential of protected areas for freshwaters, Biol. Conserv., 2007, vol. 134, pp. 48–63. https://doi.org/10.1016%2Fj.biocon.2006.08.017

    Article  Google Scholar 

  2. Ağdamar, S. and Tarkan, A.S., High genetic diversity in an invasive freshwater fish species, Carassius gibelio, suggests establishment success at the frontier between native and invasive ranges, Zool. Anz., 2019, vol. 283, pp. 192–200. https://doi.org/10.1016/j.jcz.2019.10.002

    Article  Google Scholar 

  3. Armstrong, K.F. and Ball, S.L., DNA barcodes for biosecurity: invasive species identification, Philos. Trans. R. Soc. Lond. B. Biol. Sci. USA, 2005, vol. 360, pp. 1813–1823. https://doi.org/10.1098/rstb.2005.1713

    Article  CAS  Google Scholar 

  4. Aydin, H., Gaygusuz, Ö., Tarkan, A.S., et al., Invasion of freshwater bodies in Marmara Region (NW-Turkey) by non-native gibel carp, Carassius gibelio (Bloch, 1782), Turk. J. Zool., 2011, vol. 35, pp. 829–836. https://doi.org/10.3906/zoo-1007-31

    Article  Google Scholar 

  5. Baltazar-Soares, M., Blanchet, S., Cote, J., et al., Genomic footprints of a biological invasion: Introduction from Asia and dispersal in Europe of the topmouth gudgeon (Pseudorasbora parva), Mol. Ecol., 2020, vol. 29, pp. 71–85. https://doi.org/10.1111/mec.15313

    Article  PubMed  Google Scholar 

  6. Băncilă, R.I. and Arntzen, J.W., Isolation of lizard populations measured with molecular genetic data – Podarcis guadarramae in the Ria de Arosa archipelago, Amphib-Reptil., 2016, vol. 37, pp. 446– 449. https://doi.org/10.1163/15685381-00003066

    Article  Google Scholar 

  7. Bender, W., Spierer, P., and Hogness, D.S., Chromosomal walking and jumping to isolate DNA from the ace and rosy loci and bithorax complex in Drosophila melanogaster, J. Mol. Biol., 1983, vol. 168, pp. 17–33.

    Article  CAS  PubMed  Google Scholar 

  8. Biswas, S. and Akey, J.M., Genomic insights into positive selection, Trends Genet., 2006, vol. 22, pp. 437–446. https://doi.org/10.1016/j.tig.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  9. Bock, D.G., Caseys, C., Cousens, R.D., et al., What we still don’t know about invasion genetics, Mol. Ecol., 2015, vol. 24, pp. 2277–2297. https://doi.org/10.1111/mec.13032

    Article  PubMed  Google Scholar 

  10. Carson, H.L., Microevolution in insular ecosystems, in Island ecosystems: Biological Organization in Selected Hawaiian Communities, Mueller-Dombois, D., Eds., Stroudsburg, Pennsylvania: Hutchinson-Ross, 1981, pp. 471–482.

    Google Scholar 

  11. Cassens, I., Mardulyn, P., and Milinkovitch, M.C., Evaluating intraspecific “Network” construction methods using simulated sequence data: Do existing algorithms outperform the global maximum parsimony approach?, Syst. Biol., 2005, vol. 54, pp. 363–372.https://doi.org/10.1080/10635150590945377

    Article  PubMed  Google Scholar 

  12. Darriba, D., Taboada, G.L., Doallo, R., and Posada, D.J., ModelTest 2: More models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, no. 8, p. 772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dlugosch, K.M. and Parker, I.M., Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions, Mol. Ecol., 2008, vol. 17, pp. 431–449. https://doi.org/10.1111/j.1365-294X.2007.03538.x

    Article  CAS  PubMed  Google Scholar 

  14. Dudgeon, D., Arthington, A., Gessner, M., et al., Freshwater biodiversity: importance, threats, status and conservation challenges, Biol. Rev., 2006, vol. 81, pp. 163–182. https://doi.org/10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  15. Fordham, D.A. and Brook, B.W., Why tropical island endemics are acutely susceptible to global change, Biodivers. Conserv., 2008, vol. 19, pp. 329–342. https://doi.org/10.1007/s10531-008-9529-7

    Article  Google Scholar 

  16. Frankham, R., Do island populations have less genetic variation than mainland populations?, Heredity, 1997, vol. 78, pp. 311–327.

    Article  PubMed  Google Scholar 

  17. Frankham, R., Inbreeding and extinction: Island populations, Conserv. Biol., 1998, vol. 12, pp. 665–675.

    Article  Google Scholar 

  18. Harrison, J.S. and Mondor, E.B., Evidence for an invasive aphid “superclone”: extremely low genetic diversity in Oleander aphid (Aphis nerii) populations in the southern United States, PLoSOne, 2011, vol. 6, Article e17524. https://doi.org/10.1371/journal.pone.0017524

    Article  CAS  Google Scholar 

  19. Hebert, P.D.N., Cywinska, A., Ball, S.L., and DeWaard, J.R., Biological identifications through DNA barcodes, Proc. R. Soc. B: Biol. Sci., 2003, vol. 270, pp. 313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  20. Hedrick, P.W., Genetics of Populations, Tempe: Arizona State Univ.; Jones and Bartlett Publ., 2010.

  21. Karabanov, D.P., Kodukhova, Y.V., Pashkov, A.N., et al., “Journey to the West”: Three phylogenetic lineages contributed to the invasion of stone moroko, Pseudorasbora parva (Actinopterygii: Cyprinidae), Russ. J. Biol. Invasions, 2021, vol. 12, pp. 67–78. https://doi.org/10.1134/S2075111721010070

    Article  Google Scholar 

  22. Keskin, E. and Can, A., Phylogenetic relationships among four species and a sub-species of Mullidae based on mitochondrial cytochrome b, 12S rRNA and cytochrome oxidase II genes, Biochem. Syst. Ecol., 2009, vol. 37, pp. 653–661. https://doi.org/10.1016/j.bse.2009.10.001

    Article  CAS  Google Scholar 

  23. Keskin, E. and Atar, H.H., Molecular identification of fish species from surimi based products labeled as Alaska Pollock, J. Appl. Ichthyol., 2012, vol. 28, pp. 811–814. https://doi.org/10.1111/j.1439-0426.2012.02031.x

    Article  CAS  Google Scholar 

  24. Keskin, E., Ağdamar, S., and Tarkan, A.S., DNA barcoding common non-native freshwater fish species in Turkey: low genetic diversity but high population structuring, Mitochondrial DNA, 2013, vol. 24, pp. 276–287. https://doi.org/10.3109/19401736.2012.748041

    Article  CAS  PubMed  Google Scholar 

  25. Kolbe, J.J., Glor, R.E., Schettino, L.R., et al., Genetic variation increases during biological invasion by a Cuban lizard, Nature, 2004, vol. 431, pp. 177–181. https://doi.org/10.1038/nature02807

    Article  CAS  PubMed  Google Scholar 

  26. Kolbe, J.J., Leal, M., Schoener, T.W., et al., Founder effects persist despite adaptive differentiation: A field experiment with lizards, Science, 2012, vol. 335, pp. 1086–1089. https://doi.org/10.1126/science.1209566

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, S., Stecher, G., Li, M., et al., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, C.E., Evolutionary genetics of invasive species, Trends Ecol. Evol., 2002, vol. 17, pp. 386–391. https://doi.org/10.1016/S0169-5347(02)02554-5

    Article  Google Scholar 

  29. Leigh, J.W., Bryant, D., and Nakagawa, S., popART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, pp. 1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  30. Liebert, A.E., Gamboa, G.J., Stamp, N.E., et al., Genetics, behavior and ecology of a paper wasp invasion: Polistes dominulus in North America, Ann. Zool. Fenn., 2006, vol. 43, pp. 595–624.

    Google Scholar 

  31. Lindholm, A.K., Breden, F., Alexander, H.J., et al., Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia, Mol. Ecol., 2005, vol. 14, pp. 3671–3682. https://doi.org/10.1111/j.1365-294X.2005.02697.x

    Article  CAS  PubMed  Google Scholar 

  32. McGlaughlin, M.E., Wallace, L.E., Wheeler, G.L., et al., Do the island biogeography predictions of MacArthur and Wilson hold when examining genetic diversity on the near mainland California Channel Islands? Examples from endemic Acmispon (Fabaceae), Bot. J. Linn. Soc., 2014, vol. 174, pp. 289–304. https://doi.org/10.1111/boj.12122

    Article  Google Scholar 

  33. Menges, E.S., Restoration demography and genetics of plants: when is a translocation successful?, Aust. J. Bot., 2008, vol. 56, pp. 187–196. https://doi.org/10.1071/BT07173

    Article  Google Scholar 

  34. Moilanen, A., Leathwick, J.R., and Elith, J., A method for spatial freshwater conservation prioritization, Fresh. Biol., 2008, vol. 53, pp. 577–592. https://doi.org/10.1111/j.1365-2427.2007.01906.x

    Article  Google Scholar 

  35. Önsoy, B., Filiz, H., Tarkan, A.S., et al., Occurrence of non-native fishes in a small man-made lake (Lake Ula, Muğla): Past, present, future perspectives, Turk. J. Fish. Aquat. Sci., 2011, vol. 11, pp. 209–215.

    Google Scholar 

  36. Özcan, G., Distribution of non-indigenous fish species, Prussian carp Carassius gibelio (Bloch, 1782) in the Turkish freshwater systems, Pak. J. Biol. Sci., 2007, vol. 10, pp. 4241–4245. https://doi.org/10.3923/pjbs.2007.4241.4245

    Article  PubMed  Google Scholar 

  37. Planes, S. and Lecaillon, G., Consequences of the founder effect in the genetic structure of introduced island coral reef fish populations, Biol. J. Linn. Soc., 1998, vol. 63, pp. 537–552.

    Article  Google Scholar 

  38. Rand, D.M., Dorfsman, M., and Kann, L.M., Neutral and nonneutral evolution of Drosophila mitochondrial DNA, Genetics, 1994, vol. 138, pp. 741–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rollins, L., Woolnough, A., Sinclairi R., et al., Mitochondrial DNA offers unique insights into invasion history of the common starling, Mol. Ecol., 2011, vol. 20, pp. 2301–2317. https://doi.org/10.1111/j.1365-294X.2011.05101.x

    Article  Google Scholar 

  40. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., et al., DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol. Biol. Evol., 2017, vol. 34, pp. 3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  41. Sakai, A.K., Allendorf, F.W., Holt, J.S., et al., The population biology of invasive species, Annu. Rev. Ecol. Syst., 2001, vol. 32, pp. 305–332.

    Article  Google Scholar 

  42. Simberloff, D., Impacts of introduced species in the United States, Consequences Nat. Implic. Environ. Change, 1996, vol. 2, pp. 13–22.

    Google Scholar 

  43. Tarkan, A.S., Gaygusuz, Ö., Gürsoy Gaygusuz, Ç., and Copp, G.H., Circumstantial evidence for gibel carp Carassius gibelio reproductive competition exerted on native fish species in a mesotrophic reservoir, Fish. Manag. Ecol., 2012, vol. 19, pp. 167–177. https://doi.org/10.1111/j.1365-2400.2011.00839.x

    Article  Google Scholar 

  44. Tsipas, G., Tsiamis, G., Vidalis, K., and Bourtzis, K., Genetic differentiation among Greek lake populations of Carassius gibelio and Cyprinus carpio carpio, Genetica, 2009, vol. 136, pp. 491–500. https://doi.org/10.1007/s10709-008-9331-1

    Article  PubMed  Google Scholar 

  45. Vidal, O., García-Berthou, E., Tedesco, P.A., and García-Marín, J.L., Origin and genetic diversity of mosquitofish (Gambusia holbrooki) introduced to Europe, Biol. Invasions, 2010, vol. 12, pp. 841–851. https://doi.org/10.1007/s10530-009-9505-5

    Article  Google Scholar 

  46. Wang, S., Zhu, W., Gao, X., et al., Population size and time since island isolation determine genetic diversity loss in insular frog populations, Mol. Ecol., 2014, vol. 23, pp. 637–648. https://doi.org/10.1111/mec.12634

    Article  PubMed  Google Scholar 

  47. Ward, R.D., Zemlak, T.S., Innes, B.H., et al., DNA barcoding Australia’s fish species, Philos. T. Roy. Soc. B., 2005, vol. 360, pp. 1847–1857. https://doi.org/10.1098/rstb.2005.1716

    Article  CAS  Google Scholar 

  48. Woolley, S.M., Posada, D., and Crandall, K.A., A comparison of phylogenetic network methods using computer simulation, PLoSOne, 2008, vol. 3, Article e1913. https://doi.org/10.1371/journal.pone.0001913

Download references

ACKNOWLEDGMENTS

The author thanks Dr. Gülşah Saç (Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey), Dr. Özcan Gaygusuz (Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Turkey) and Sedat Ozan Güreşen (Gökçeada Marine Research Unit, Faculty of Aquatic Sciences, Istanbul University, Çanakkale, Turkey) for helping in sampling. The author also thanks Prof. Müfit Özuluğ (Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey), Dr. Çiğdem Gürsoy Gaygusuz (Keşan Vocational School, Trakya University, Edirne, Turkey), Dr. Ersin Doğaç (Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey), and Dr. Ümit Acar (Department of Forestry, Bayramiç Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey) for their contributions. The author expresses his gratitude to Istanbul University Faculty of Aquatic Sciences for the laboratory access provided by Gökçeada Marine Research Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ağdamar.

Ethics declarations

Conflict of interests. The author declares that he has no conflict of interests.

Statement on the welfare of humans or animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

This study was conducted as out of scope with the permission of Çanakkale Onsekiz Mart University Committee of Animal Experiments Local Ethics (Decision no.: 2021/02-21) and dead animal tissues were used.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ağdamar, S. Does Islander Invasive Fish Species Acquire Genetic Variation? The Case of Gökçeada Island, the Westernmost Part of Turkey. J. Ichthyol. 62, 840–849 (2022). https://doi.org/10.1134/S0032945222050010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945222050010

Keywords:

Navigation