Skip to main content
Log in

Wear Performances of Hypereutectoid P/M Steels Subjected to Different Heat Treatments

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Dry sliding wear test specimens of high-carbon powder metallurgy steels were performed in accordance with the ASTM G99-05 standard. Heat treatment of sintered specimens was carried out by the austenitization process at 950°C for 4 min, next quenching in a salt bath at 210, 350 and 400°C for 60–360 s. Wear performances of the specimens were carried out with a constant load of 10 N, at a sliding speed of 1.00 m s–1 and up to a sliding distance of 1000 m. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for microstructure analysis and phase identification. It was seen that the friction coefficient of the specimen was not directly related to the hardness. The friction coefficient of the specimen with the lowest hardness, which was treated isothermal at 400°C, is lower than the specimen with higher hardness. However, even though the friction coefficient is low in this sample, the increase in the wear rate was remarkable. In other specimens, the coefficient of friction and wear rate decreased proportionally with the increase in their hardness. The wear rate of the specimens was reduced by the decrease in isothermal holding temperature and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. M. Carsí, A. F. Fernández-Vicente, O. A. Ruano, and O. D. Sherby, “Processing, microstructure, strength, and ductility relationships in ultrahigh carbon steel assessed by high strain rate torsion testing,” Mater. Sci. Technol. 15, 1087–1095 (1999). https://doi.org/10.1179/026708399101506814

    Article  ADS  Google Scholar 

  2. M. D. Hecht, Yo. N. Picard, and B. A. Webler, “Effects of Cr concentration on cementite coarsening in ultrahigh carbon steel,” Metall. Mater. Trans. A 50, 4779–4790 (2019). https://doi.org/10.1007/s11661-019-05403-w

    Article  CAS  Google Scholar 

  3. M. D. Hecht, Yo. N. Picard, and B. A. Webler, “Coarsening of inter- and intra-granular proeutectoid cementite in an initially pearlitic 2C–4Cr ultrahigh carbon steel,” Metall. Mater. Trans. A 48, 2320–2335 (2017). https://doi.org/10.1007/s11661-017-4012-2

    Article  ADS  CAS  Google Scholar 

  4. W. Liu, Ya. Cao, Yi. Guo, B. Xu, M. Sun, and D. Li, “Characteristics and transformation of primary carbides during austenitization in Cr4Mo4V bearing steel,” Mater. Charact. 169, 110636 (2020). https://doi.org/10.1016/j.matchar.2020.110636

    Article  CAS  Google Scholar 

  5. W. M. Melfo, R. J. Dippenaar, and B. J. Monaghan, “Effect of particle composition on consolidation of hot briquetted iron,” Ironmaking Steelmaking 33, 93–100 (2006). https://doi.org/10.1179/174328106x80118

    Article  CAS  Google Scholar 

  6. T. V. S. Rajan, C. P. Sharma, A. K. Sharma, et al., Heat Treatment: Principles and Techniques (PHI Learning, New Delhi, 2011).

    Google Scholar 

  7. V. M. Schastlivtsev, Yu. V. Kaletina, E. A. Fokina, and A. Yu. Kaletin, “Effect of cooling rate on the amount of retained austenite upon bainitic transformations,” Phys. Met. Metallogr. 115, 990–1000 (2014). https://doi.org/10.1134/s0031918x14100147

    Article  ADS  Google Scholar 

  8. P. V. Krishna, R. R. Srikant, M. Iqbal, and N. Sriram, “Effect of austempering and martempering on the properties of AISI 52100 steel,” ISRN Tribol. 2013, 515484 (2013). https://doi.org/10.5402/2013/515484

    Article  CAS  Google Scholar 

  9. M. H. Shaeri, H. Saghafian, and S. G. Shabestari, “Effect of heat treatment on microstructure and mechanical properties of Cr–Mo steels (FMU-226) used in mills liner,” Mater. Des. 34, 192–200 (2012). https://doi.org/10.1016/j.matdes.2011.07.042

    Article  CAS  Google Scholar 

  10. Yu. Lin, Ya. Zheng, Z. Wu, and W. Garrison, “A discussion of the effects of composition and heat treatment on the toughness of a medium carbon secondary hardening steel,” Mater. Sci. Eng., A 748, 213–227 (2019). https://doi.org/10.1016/j.msea.2019.01.079

    Article  CAS  Google Scholar 

  11. Y. Shigeta, M. Aramaki, K. Ashizuka, Y. Ikoma, and Y. Ozaki, “Effect of networked Cu-rich ferrite phase on proof stress and ultimate tensile strength of sintered bodies of Fe–Cu hybrid-alloyed steel powder with graphite,” Powder Metall. 64, 134–141 (2021). https://doi.org/10.1080/00325899.2021.1871805

    Article  ADS  CAS  Google Scholar 

  12. R. M. German, Powder Metallurgy Science (Metal Powder Industries Federation, United States, 1984).

    Google Scholar 

  13. O. Altuntaş and A. Güral, “Designing spherical cementite in bainitic matrix (SCBM) microstructures in high carbon powder metal steels to improve dry sliding wear resistance,” Mater. Lett. 249, 185–188 (2019). https://doi.org/10.1016/j.matlet.2019.04.095

    Article  CAS  Google Scholar 

  14. P. C. Angelo and R. Subramanian, Powder Metallurgy: Science, Technology and Applications (PHI Learning, New Delhi, 2008).

    Google Scholar 

  15. Advances in Powder Metallurgy: Properties, Processing and Applications, Ed. by I. Chang and Y. Zhao, Woodhead Publishing Series in Metals and Surface Engineering (Woodhead Publishing, 2013). https://doi.org/10.1533/9780857098900

    Book  Google Scholar 

  16. M. H. Elahinia, M. Hashemi, M. Tabesh, and S. Bhaduri, “Manufacturing and processing of NiTi implants: A review,” Prog. Mater. Sci. 57, 911–946 (2012). https://doi.org/10.1016/j.pmatsci.2011.11.001

    Article  CAS  Google Scholar 

  17. M. Steeper, M. Jackson, P. Madin, and K. Ridal, “Advances in metal manufacturing technologies,” Ironmaking Steelmaking 38, 241–249 (2011). https://doi.org/10.1179/030192311x13001032135164

    Article  CAS  Google Scholar 

  18. P. Burke, C. Petit, V. Vuaroqueaux, A. Doyle, and G. Kipouros, “Processing parameters and post-sintering operations effects in magnesium powder metallurgy,” Can. Metall. Q. 50, 240–245 (2011). https://doi.org/10.1179/1879139511y.0000000013

    Article  CAS  Google Scholar 

  19. S. Tekeli and A. Güral, “Microstructural characterisation of intercritically annealed 0.5 wt–%Ni and Mn added steels prepared by powder metallurgy method,” Mater. Sci. Technol. 23, 72–78 (2007). https://doi.org/10.1179/174328407x158442

    Article  ADS  CAS  Google Scholar 

  20. M. Khaleghi and R. Haynes, “Sintering and heat treatment of steels made from a partially prealloyed iron powder,” Powder Metall. 28, 217–223 (1985). https://doi.org/10.1179/pom.1985.28.4.217

    Article  ADS  CAS  Google Scholar 

  21. K. S. Narasimhan, “Sintering of powder mixtures and the growth of ferrous powder metallurgy,” Mater. Chem. Phys. 67, 56–65 (2001). https://doi.org/10.1016/s0254-0584(00)00420-x

    Article  CAS  Google Scholar 

  22. L. A. Dobrzański, G. Matula, A. Várez, B. Levenfeld, and J. M. Torralba, “Fabrication methods and heat treatment conditions effect on tribological properties of high speed steels,” J. Mater. Process. Technol. 157-158, 324–330 (2004). https://doi.org/10.1016/j.jmatprotec.2004.09.051

    Article  CAS  Google Scholar 

  23. S. Geroldinger, R. de Oro Calderon, C. Gierl-Mayer, and H. Danninger, “Sinter hardening PM steels prepared through hybrid alloying,” HTM J. Heat Treat. Mater. 76, 105–119 (2021). https://doi.org/10.1515/htm-2020-0007

    Article  ADS  Google Scholar 

  24. S. S. Rathore and V. V. Dabhade, “Hardenability of sinter-forged Fe–2Cu–0.7C–xMo alloys,” J. Alloys Compd. 664, 133–140 (2016). https://doi.org/10.1016/j.jallcom.2015.12.240

    Article  CAS  Google Scholar 

  25. S. Chatterjee and H. K. D. H. Bhadeshia, “TRIP-assisted steels: Cracking of high-carbon martensite,” Mater. Sci. Technol. 22, 645–649 (2006). https://doi.org/10.1179/174328406x86182

    Article  ADS  CAS  Google Scholar 

  26. M. K. Bai, J. C. Pang, G. D. Wang, and H. L. Yi, “Martensitic transformation cracking in high carbon steels for bearings,” Mater. Sci. Technol. 32, 1179–1183 (2016). https://doi.org/10.1080/02670836.2016.1148108

    Article  ADS  CAS  Google Scholar 

  27. S. Pashangeh, M. C. Somani, S. S. Ghasemi Banad-kouki, H. R. Karimi Zarchi, P. Kaikkonen, and D. A. Porter, “On the decomposition of austenite in a high-silicon medium-carbon steel during quenching and isothermal holding above and below the Ms temperature,” Mater. Charact. 162, 110224 (2020). https://doi.org/10.1016/j.matchar.2020.110224

    Article  CAS  Google Scholar 

  28. D. R. H. Jones and M. F. Ashby, Engineering Materials 2: Forming of The Structure and Properties, Materials Selection, 2nd ed. (WNT, 1998).

    Google Scholar 

  29. W. L. Costin, O. Lavigne, and A. A. Kotousov, “A study on the relationship between microstructure and mechanical properties of acicular ferrite and upper bainite,” Mater. Sci. Eng., A 663, 193–203 (2016). https://doi.org/10.1016/j.msea.2016.03.103

    Article  CAS  Google Scholar 

  30. R. Hossain, F. Pahlevani, and V. Sahajwalla, “Stability of retained austenite in high carbon steel–Effect of post-tempering heat treatment,” Mater. Charact. 149, 239–247 (2019). https://doi.org/10.1016/j.matchar.2019.01.034

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Güral.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmet Güral, Taşkıran, K.C., Altuntaş, O. et al. Wear Performances of Hypereutectoid P/M Steels Subjected to Different Heat Treatments. Phys. Metals Metallogr. 124, 1433–1442 (2023). https://doi.org/10.1134/S0031918X23600021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600021

Keywords:

Navigation