Skip to main content
Log in

Effect of Deformation-Thermal Processing on the Microstructure and Mechanical Properties of Low-Carbon Structural Steel

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

An ultrafine-grained (UFG) structure of equiaxed and fiber types in the low-carbon structural steel 05G2MFBT (Fe–2Mn–Mo–V–Nb–Ti) has been formed with various techniques of deformation-heat treatment. This steel with a UFG structure has been found to exhibit higher strength properties. Different deformation techniques have been shown to produce either a fibrous or an equiaxed UFG structure with carbide particles of a wide range of sizes. The brittle fracture resistance of the fibrous UFG steel has been found to be higher than that of the fine-grained steel after controlled rolling and subsequent accelerated cooling. Standard bending-impact tests have shown that the steel with a fibrous UFG structure is characterized by higher impact strength characteristics and a lower ductile–brittle transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. O. A. Sofrygina, S. Yu. Zhukova, S. M. Bityukov, and I. Yu. Pyshmintsev, “Economical steels for the manufacture of high-strength oil pipe (according to the API SPEC5CT standard)” Steel Transl. 40, No. 7, 616–621 (2010).

    Article  Google Scholar 

  2. L. M. Kleiner, K. A. Kobelev, S. K. Greben’kov, and D. M. Larinin, “A new class of structural steels in mechanical engineering,” Metallurg. Mashinost., No. 5, 39–40 (2011).

  3. V. A. Pavlov, Physical Basics of Cold Deformation of BCC Metals (Nauka, Moscow, 1978).

    Google Scholar 

  4. V. M. Chernov, B. K. Kardashev, and K. A. Moroz, “Cold brittleness and fracture of metals with various crystal lattices: dislocation mechanisms,” Tech. Phys. 61, 1015–1022 (2016).

    Article  CAS  Google Scholar 

  5. R. Z. Valiev, G Klevtsov, N. A. Klevtsova, M. V. Fasenyuk, M. R. Kashapov, A. G. Raab, M. V.  Karavaeva, and A Ganeev, “The influence of the modes of equal channel angular pressing and subsequent heating on the strength and the mechanism of failure of steel 10,” Deformatsiya i Razrusheniya Materialov, No. 1, 21–25 (2013).

    Google Scholar 

  6. I. M. Safarov, A Korznikov, R. M. Galeev, S. N. Sergeev, S. V.  Gladkovskii, and I. Yu. Pyshmintsev, “An anomaly of the temperature dependence of the impact strength of low-carbon steel with an ultrafine-grain structure,” Dokl. Phys. 61, 15–18 (2017).

    Article  Google Scholar 

  7. V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, N. A. Tereshchenko, and T. I. Tabatchikova, “Effect of increasing impact toughness on the formation of a layered structure upon hot rolling of a ferritic steel,” Dokl. Phys. 55, 334–337 (2010).

    Article  CAS  Google Scholar 

  8. D. A. Mirzaev, D Shaburov, I. L. Yakovleva, A Panov, L Elokhina, Factors responsible for increasing ductility of the ferritic steel 08Kh1ST1 In the course of repeated hot rolling,” Phys. Met. Metallogr. 98, No. 3, 317–325 (2004).

    Google Scholar 

  9. Dolzhenko A., Z. Yanushkevich, S. A. Nikulin, A. Belyakov, and R. Kaibyshev, “Impact toughness of an S700MC-type steel: Tempforming vs ausforming,” Mater. Sci. Eng., A 723, 259–268 (2018).

    Article  CAS  Google Scholar 

  10. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochial, “Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling,” Metall. Mater. Trans. A 41, 341–355 (2010).

    Article  Google Scholar 

  11. S. N. Sergeev, I. M. Safarov, A. V. Korznikov, R. M. Galeev, S Gladkovskii, and D. A. Dvoinikov, “Effect of warm rolling on the structure and mechanical properties of low carbon tube steel,” Pis’ma Mater. 5, No. 1, 51–54 (2015).

    Google Scholar 

  12. I. M. Safarov, A. V. Korznikov, R. M. Galeev, S. N. Sergeev, S. V. Gladkovskii, E. M. Borodin, and I. Yu. Pyshmintsev, “Strength and impact toughness of low-carbon steel with fibrous ultrafine-grained structure,” Phys. Met. Metallogr. 115, No. 3, 315–323 (2014).

    Article  CAS  Google Scholar 

  13. Y. Kimura, T. Inoue, and K. Tsuzaki, “Tempforming in medium-carbon low-alloy steel,” J. Alloys Compd. 577, 538–542 (2013).

    Article  Google Scholar 

  14. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki, “Delamination toughening of ultrafine grain structure steels processed through tempforming at elevated temperatures,” ISIJ Int. 50, No. 1, 152–161 (2010).

    Article  CAS  Google Scholar 

  15. Y. Kimura and T. Inoue, “Influence of warm tempforming on microstructure and mechanical properties in an ultrahigh-strength medium-carbon low-alloy steel, “Metall. Mater. Trans. A 44, 560—576 (2013).

    Article  CAS  Google Scholar 

  16. V. N. Danilenko, S. Yu. Mironov, A. N. Belyakov, and A. P. Zhilyaev, “Application of EBSD analysis in physical materials science (Review),” Zavod. Lab., Diagn. Mater. 78, No. 2, 28–46 (2012).

    CAS  Google Scholar 

  17. J. D. Embury, N. J. Petch, A. E. Wraith, and E. S. Wright, “The fracture of mild steel laminates,” Trans. Metall. Soc. AIME 239, 114–118 (1967).

    CAS  Google Scholar 

  18. L. R. Botvina, Failure: Kinetics, Mechanisms, General Relations (Nauka, Moscow, 2008) [in Russian].

  19. L. I. Efron, Metal Science in “Large” Metallurgy. Pipe Steels (Metallurgizdat, Moscow, 2012) [in Russian].

    Google Scholar 

  20. I. L. Yakovleva, N. A. Tereshchenko, and N Urtsev, “Observation of the martensitic-austenitic component in the structure of low-carbon low-alloy pipe steel,” Phys. Met. Metallogr. 121, No. 4, 352–358 (2020).

    Article  CAS  Google Scholar 

  21. M. L. Lobanov, I. Yu. Pyshmintsev, V. N. Urtsev, S. V. Danilov, N Urtsev, and A. A. Redikul’tsev, “Texture inheritance in the ferrito-martensite structure of low-alloy steel after thermomechanical controlled processing,” Phys. Met. Metallogr. 120, No. 12, 1180–1186 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The scientific research was carried out at the Structural and Physical-Mechanical Studies of Materials Center of the Collaborative Use of the Institute for Problems of Metal Superplasticity of the Russian Academy of Sciences.

Funding

This work was performed within the state assignment of Institute for Problems of Metal Superplasticity of the Russian Academy of Sciences and Institute of Engineering Science, Ural Branch of the RAS for 2019–2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sergeev.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, S.N., Safarov, I.M., Zhilyaev, A.P. et al. Effect of Deformation-Thermal Processing on the Microstructure and Mechanical Properties of Low-Carbon Structural Steel. Phys. Metals Metallogr. 122, 621–627 (2021). https://doi.org/10.1134/S0031918X21060090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21060090

Keywords:

Navigation