Skip to main content
Log in

Specificities of the Magnetization Reversal of Magnetically Uniaxial Films with Columnar Defects

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This work studies the behavior of magnetic skyrmions forming on columnar defects of potential well type in uniaxial ferromagnetic films in a magnetic field. It is shown that their structure, which is characterized by three sections of magnetic moment rotation, undergoes a series of transformations in a magnetic field. Critical fields for the restructuring of their structure, which substantially depend on the parameters of the defect, are found. It is found that for certain material parameters, when, in the absence of a field, vortex-like irregularities are unstable, they can become stable formations in a nonzero field. Possible types of magnetic materials in which they can be realized are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. I. Mitsek and S. S. Semyannikov, “The effect of antiphase boundaries on the magnetic properties of ferromagnets,” Fiz. Tverd. Tela 11, 1103–1113 (1969).

    CAS  Google Scholar 

  2. G. S. Kandaurova, “The nature of magnetic hysteresis,” Soros. Obrazovat. Zh., No. 1, 100–106 (1997).

  3. E. B. Magadeev and R. M. Vakhitov, “Generation of magnetic inhomogeneities at solitary ferromagnet defects,” Theor. Math. Phys. 184, 1011–1019 (2015).

    Article  Google Scholar 

  4. M. V. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Magn. Magn. Mater. 396, 338–344 (2015).

    Article  CAS  Google Scholar 

  5. M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva, N. S. Gusev, A. A. Fraerman, S. A. Gusev, and Yu. V. Petrov, “Artificial dense lattice of magnetic bubbles,” Appl. Phys. Lett. 109, 042406 (2016).

    Article  Google Scholar 

  6. R. M. Vakhitov, T. B. Shapaeva, R. V. Solonetskii, and A. R. Yumaguzin, “Structure of micromagnetic formations arising on defects in garnet-ferrite films,” Phys. Met. Metallogr. 118, 541–545 (2017).

    Article  CAS  Google Scholar 

  7. V. K. Vlasko-Vlasov, L. M. Dedukh, M. V. Indenbom, and V. I. Nikitenko, “Magnetic orientation phase transition in real crystal,” Zh. Eksp. Teor. Fiz. 84, 277–288 (1983).

    CAS  Google Scholar 

  8. R. M. Vakhitov and A. R. Yumaguzin, “On a mechanism of nucleation in crystals with combined anisotropy,” Phys. Solid State 43, 65–72 (2001).

    Article  CAS  Google Scholar 

  9. D. Gall, “Micromagnetism–microstructure relations and the hysteresis loop,” In Handbook of Magnetism and Advanced Magnetic Materials, Ed. by H. Kronmuller and S. Parkin (Wiley, New York, 2007), pp. 1–36.

  10. R. M. Vakhitov, R. V. Solonetskii, and I. B. Larionov, “The peculiarities of behavior of nuclei remagnetization in a magnetic field in uniaxial films,” Phys. Solid State 59, 1110–1117 (2017).

    Article  CAS  Google Scholar 

  11. M. V. Sapozhnikov and O. L. Ermolaeva, “Two-dimensional skyrmion lattice in nanopatterned magnetic film,” Phys. Rev. 91, 024418 (2015).

    Article  Google Scholar 

  12. R. M. Vakhitov, A. A. Akhmetova, and R. V. Solonetskii, “Vortex-like structures at the defects of uniaxial films,” Phys. Solid State 61, 319–325 (2019).

    Article  CAS  Google Scholar 

  13. S. D. Ryan, V. Mityushev, V. M. Vinokur, and L. Berlyand, “Rayleigh approximation to ground state of the Bose and Coulomb glasses,” Sci. Rep. 5, 7821 (2015).

    Article  CAS  Google Scholar 

  14. Y. Onose, N. Takeshita, C. Terakura, H. Takagi, and Y. Tokura, “Doping dependence of transport properties in Fe1 – xCoxSi,” Phys. Rev. B 72, 224431 (2005).

    Article  Google Scholar 

  15. A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Boni, “Topological Hall effect in the phase of MnSi,” Phys. Rev. Lett. 102, 186602 (2009).

    Article  CAS  Google Scholar 

  16. T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, “Emergent electrodynamics of skyrmions in a chiral magnet,” Nat. Phys. 8, 301–304 (2012).

    Article  CAS  Google Scholar 

  17. X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, “Skyrmion flow near room temperature in an ultralow current density,” Nature Commun. 3, 988 (2012).

    Article  CAS  Google Scholar 

  18. J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, “Dynamics of skyrmion crystals in metallic thin films,” Phys. Rev. Lett. 107, 136804 (2011).

    Article  Google Scholar 

  19. A. Bogdanov and A. Hubert, “Thermodynamically stable magnetic vortex states in magnetic crystals,” J. Magn. Magn. Mater. 138, 255–269 (1994).

    Article  CAS  Google Scholar 

  20. A. Bogdanov and A. Hubert, “Stability of vortex-like structures in uniaxial ferromagnets,” J. Magn. Magn. Mater. 195, 182–192 (1999).

    Article  CAS  Google Scholar 

  21. M. V. Sapozhnikov, O. V. Ermolaeva, E. V. Skorokhodov, N. S. Gusev, and M. N. Drozdov, “Magnetic skyrmions in thickness-modulated films,” JETP Lett. 107, 364–368 (2018).

    Article  CAS  Google Scholar 

  22. C. S. Davies, K. H. Prabhakara, M. D. Davydova, K. A. Zvezdin, T. B. Shapaeva, S. Wang, A. K. Zvezdin, A. Kirilyuk, Th. Rasing, and A. V. Kimel, “Anomalously damped heat-assisted route of precessional magnetization reversal in an iron garnet,” Phys. Rev. Lett. 122, 027202 (2019).

    Article  CAS  Google Scholar 

  23. D. P. Kulikova, A. P. Pyatakov, E. P. Nikolaeva, A. S. Sergeev, T. B. Kosykh, Z. A. Pyatakova, A. V. Nikolaev, and A. K. Zvezdin, “Nucleation of magnetic bubble domains in iron garnet films by means of an electric field,” JETP Lett. 104, 197–200 (2016).

    Article  CAS  Google Scholar 

  24. K. W. Guslienko, “Magnetic vortex state stability, reversal and dynamics in restricted geometries,” J. Nanosci. Nanotechnol. 8, 2745–2760 (2008).

    Article  CAS  Google Scholar 

  25. S. Muhlbauer, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323, 915–919 (2009).

    Article  CAS  Google Scholar 

  26. S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, “Observation of skyrmions in a multiferroic material,” Science 336, 198–201 (2012).

    Article  CAS  Google Scholar 

  27. E. B. Magadeev and R. M. Vakhitov, “Topology and properties of the 0-degree domain wall in a transverse magnetic field,” Phys. Solid State 53, 1005–1012 (2011).

    Article  CAS  Google Scholar 

  28. E. B. Magadeev and R. M. Vakhitov, “Topology of solitary magnetic inhomogeneities in a thin ferromagnetic film,” Theor. Math. Phys. 171, 862–869 (2012).

    Article  CAS  Google Scholar 

  29. A. Hubert and R. Schafer, Magnetic Domains (Springer, Berlin, 2007).

    Google Scholar 

  30. H. E. Khodenkov, N. N. Kudelkin, and V. V. Randoshkin, “The breakdown of the 360° Bloch domain wall in bubble magnetic films,” Phys. Status Solidi A 84, 135–139 (1984).

    Article  Google Scholar 

  31. F. Büttner, I. Lemesh, and S. D. Geoffrey Beach, “Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications,” Sci. Rep. 8, 4464 (2018).

    Article  Google Scholar 

  32. A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic Press, New York, 1979).

    Google Scholar 

  33. A. H. Eschenfelder, Magnetic Bubble Technology (Springer, Berlin, 1981).

    Book  Google Scholar 

  34. V. Oderno, C. Dufour, K. Dumesnil, Ph. Bauer, Ph. Mangin, and G. Marchal, “Magnetic anisotropy in (110) epitaxial DyFe2 Laves phase,” Phys. Rev. B 54, 17375–17378 (1996).

    Article  Google Scholar 

  35. W. He, H.-L. Liu, H.-Y. Wu, J.-W. Cai, and Z.‑H. Cheng, “Probing temperature-driven spin reorientation transition of GdFeCo film by Kerr loops and ferromagnetic resonance,” Appl. Phys. Lett., 106, 042401 (2015).

    Article  Google Scholar 

  36. T. Devolder, J. Ferre, C. Chappert, H. Bernas, J.‑P. Jamet, and V. Mathet, “Magnetic properties of He+-irradiated Pt/Co/Pt ultrathin films,” Phys. Rev. B 64, 064415 (2001).

    Article  Google Scholar 

  37. A. S. Logginov, A. V. Nikolaev, E. P. Nikolaeva, and V. N. Onishchuk, “Modification of the domain wall structure and generation of submicron magnetic formations by local optical irradiation,” J. Exp. Theor. Phys. 90, 499–507 (2000).

    Article  CAS  Google Scholar 

  38. A. S. Logginov, G. A. Meshkov, A. V. Nikolaev, and A. P. Pyatakov, “Magnetoelectric control of domain walls in a ferrite garnet film,” JETP Lett. 86, 115–118 (2007).

    Article  CAS  Google Scholar 

  39. G. V. Arzamastseva, A. M. Balbashov, F. V. Lisovskii, E. G. Mansvetova, A. G. Temiryazev, and M. P. Temirya-zeva, “Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect,” J. Exp. Theor. Phys. 120, 687–701 (2015).

    Article  CAS  Google Scholar 

  40. L. P. Ivanov, A. S. Logginov, G. A. Nepokoichitskii, and I. I. Nikitin, “An experimental study of the inhomogeneous rotation of magnetization vectors in single-crystal films of garnet ferrites,” Zh. Exp. Teor. Fiz. 88, 260–271 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Vakhitov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakhitov, R.M., Solonetskiy, R.V. & Akhmetova, A.A. Specificities of the Magnetization Reversal of Magnetically Uniaxial Films with Columnar Defects. Phys. Metals Metallogr. 121, 416–422 (2020). https://doi.org/10.1134/S0031918X20050130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20050130

Keywords:

Navigation