Skip to main content
Log in

Nonreciprocity in Yttrium-Iron Garnet–Superconductor Structures

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This article presents the results of experimental studies of the effect of proximity of a ferromagnetic dielectric with in-plane magnetization (Y3Fe5O12) on the superconducting transition in planar hybrid Y3Fe5O12/Nb and Y3Fe5O12/Al structures. The temperature dependence of the superconductor resistance changes due to the proximity of the magnetic dielectric: the superconducting transition temperature is lowered, and the transition broadens. The dependence of these effects on the mutual orientation of current in the superconductor and in-plane magnetization in the dielectric is revealed. The role of spin–orbit interaction at the superconductor/magnetic dielectric interface and symmetry violation in the superconductor with one of its surfaces being in contact with the magnetic material (and the other being free) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhrman, “Probing ferromagnets with Andreev reflection,” Phys. Rev. Lett. 81, 3247–3250 (1998).

    Article  CAS  Google Scholar 

  2. Z. Yang and V. V. Moshalkov, “Domain wall modulated superconductivity in Nb/Y3Fe5O12 hybrids,” J. Appl. Phys. 109, 083908 (2011).

    Article  Google Scholar 

  3. I. V. Bobkova and A. M. Bobkov, “Long-range spin imbalance in mesoscopic superconductors under a Zeeman splitting,” JETP Lett. 101, 118–124 (2015).

    Article  CAS  Google Scholar 

  4. A. I. Buzdin, “Proximity effects in superconductor-ferromagnet heterostructures,” Rev. Mod. Phys. 77, 935–976 (2005).

    Article  CAS  Google Scholar 

  5. A. Yu. Aladushkin, J. Fritsche, and V. V. Moshalkov, “Planar superconductor/ferromagnet hybrids: anisotropy of resistivity induced by magnetic templates,” Appl. Phys. Lett. 94, 222503 (2009).

    Article  Google Scholar 

  6. T. Champel and M. Eschrig, “Switching superconductivity in superconductor/ferromagnet bilayers by multiple-domain structures,” Phys. Rev. B 71, 220506 (2005).

    Article  Google Scholar 

  7. A. V. Samokhvalov, R. I. Shekhter, and A. I. Buzdin, “Simulation of a singlet superconductivity in SFS weak links by spin-exchange scattering of cooper pairs,” Sci. Rep. 4, 5671 (2014).

    CAS  Google Scholar 

  8. M. G. Blamire and J. W. A. Robinson, “The interface between superconductivity and magnetism: understanding and device prospects,” J. Phys.: Condens. Matter 26, 453201 (2014).

    CAS  Google Scholar 

  9. Yu. M. Yakovlev and S. Sh. Gendelev, Single Crystals of Ferrites for Radioelectronics (Sovetskoe Radio, Moscow, 1975).

    Google Scholar 

  10. R. C. Linares, “Epitaxial growth of narrow linewidth yttrium iron garnet films,” J. Cryst. Growth 2, 443–446 (1968).

    Article  Google Scholar 

  11. A. P. Nosov, S. S. Dubinin, D. V. Starichenko, D. V. Ivanov, A. V. Kobelev, E. A. Kravtsov, M. V. Ryabukhina, N. O. Antropov, V. D. Bessonov, S. V. Naumov, and V. V. Ustinov, “Specific features of the magnetic anisotropy of thin yttrium iron garnet films prepared by pulsed laser deposition,” Phys. Met. Metallogr. 119, 1062–1067 (2018).

    Article  CAS  Google Scholar 

  12. A. Manchon, J. Zelezny, Jungwirth, T. J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, “Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems,” Rev. Mod. Phys. 91, 035004 (2019)

    Article  CAS  Google Scholar 

  13. C. Du, H. Wang, P. C. Hammel, and F. Yang, “Y3Fe5O12 spin pumping for quantitative understanding of pure spin transport and spin Hall effect in a broad range of materials,” J. Appl. Phys. 117, 172603 (2015).

    Article  Google Scholar 

  14. M. Eschrig, A. Cottet, W. Belzig, and J. Linder, “General boundary conditions for quasiclassical theory of superconductivity in the diffusive limit: Application to strongly spin-polarized systems,” New J. Phys. 17, 083037 (2015).

    Article  Google Scholar 

  15. J. A. Ouassou, A. Pal, M. Blamire, M. Eschrig, and J. Linder, “Triplet Cooper pairs induced in diffusive s‑wave superconductors interfaced with strongly spin-polarized magnetic insulators or half-metallic ferromagnets,” Sci. Rep. 7, 1932 (2017).

    Article  Google Scholar 

  16. V. K. Vlasko-Vlasov, L. M. Dedukh, and V. I. Nikitenko, “The domain structure of single crystals of yttrium-iron garnet,” Zh. Eksp. Teor. Fiz. 71, 2291–2304 (1976).

    CAS  Google Scholar 

  17. Y. M. Xiong, S. Stadler, P. W. Adams, and G. Gatelani, “Spin-resolved tunneling studies of the exchange field in EuS/Al bilayers,” Phys. Rev. Lett. 106, 247001 (2011).

    Article  CAS  Google Scholar 

  18. T. J. Liu, J. C. Prestigiacomo, and P. W. Adams, “Electrostatic tuning of the proximity-induced exchange field in EuS/Al bilayers,” Phys. Rev. Lett. 111, 027207 (2013).

    Article  CAS  Google Scholar 

  19. A. S. Vasenko, S. Kawabata, A. Ozaeto, A. A. Golubov, V. S. Stolyarov, F. S. Bergeret, and F. W. J. Hekking, “Detection of small exchange fields in S/F structures,” J. Magn. Magn. Mater. 383, 175–179 (2015).

    Article  CAS  Google Scholar 

  20. I. V. Bobkova and Yu. S. Barash, “Effects of spin-orbit interaction on superconductor–ferromagnet heterostructures: Spontaneous electric and spin surface currents,” JETP Lett. 80, 494–499 (2004).

    Article  CAS  Google Scholar 

  21. V. M. Edelstein, “Spin polarization of conduction electrons induced by electrical current in two dimensional asymmetric electron systems,” Solid State Comm. 73, 233–235 (1990).

    Article  Google Scholar 

  22. V. M. Edelstein, “The Ginzburg–Landau equation for superconductors of polar symmetry,” J. Phys.: Condens. Matter. 8, 339–349 (1996).

    CAS  Google Scholar 

  23. Yu. N. Proshin and M. G. Khusainov, “Manifestations of the Larkin–Ovchinnikov–Fulde–Ferrell state in bimetal ferromagnet–superconductor structures,” JETP Lett. 66, 562–568 (1997).

    Article  Google Scholar 

  24. V. M. Edelstein, “Magneto-optical signature of broken mirror symmetry of two-dimensional conductors,” JETP Lett. 102, 743–748 (2015).

    Article  CAS  Google Scholar 

  25. V. A. Vas’ko, V. A. Larkin, P. A. Kraus, K. R. Nikolaev, D. E. Grupp, C. A. Nordman, and A. M. Goldman, “Critical current suppression in a superconductor by injection of spin-polarized carriers from a ferromagnet,” Phys. Rev. Lett. 78, 1134–1137 (1997).

    Article  Google Scholar 

  26. A. Cottet, “Spectroscopy and critical temperature of diffusive superconducting/ferromagnetic hybrid structures with spin-active interfaces,” Phys. Rev. B 76, 224505 (2007).

    Article  Google Scholar 

  27. A. M. Bobkov and I. V. Bobkova, “Enhancing of the in-plane FFLO-state critical temperature in heterostructures by the orbital effect of the magnetic field,” JETP Lett. 99, 333–339 (2014).

    Article  CAS  Google Scholar 

  28. N. G. Pugach and M. O. Safonchik, “Increase in the critical temperature of the superconducting transition of a hybrid structure upon the magnetization of spiral antiferromagnets,” JETP Lett. 107, 302–306 (2018).

    Article  CAS  Google Scholar 

  29. P. Fulde and R. Ferrell, “Superconductivity in a strong spin-exchange field,” Phys. Rev. 135, 550–563 (1964).

    Article  Google Scholar 

  30. I. Larkin and Yu. N. Ovchinnikov, “Inhomogeneous state of superconductors,” Zh. Eksp. Teor. Fiz. 47, 1136–1146 (1964).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was conducted at the Institute of Solid State Physics of the Russian Academy of Sciences. The authors wish to thank S.I. Bozhko and S.V. Egorov for their help in AFM and SEM studies of the surface of samples and V. Bol’ginov, L. Karelina, and A. Kokotin for technical assistance in experiments.

Funding

This study was supported in part by the Russian Foundation for Basic Research (project nos. 17-02-01270 and 19‑02-00316) and the “Topical Problems of Low-Temperature Physics” program of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Uspenskaya.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspenskaya, L.S., L’vov, D.S., Penzyakov, G.A. et al. Nonreciprocity in Yttrium-Iron Garnet–Superconductor Structures. Phys. Metals Metallogr. 121, 423–428 (2020). https://doi.org/10.1134/S0031918X20050129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20050129

Keywords:

Navigation