Skip to main content
Log in

Magnetic Interactions on Oxide Ferromagnet/Ferromagnetic Intermetallide Interface

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The magnetic properties of heterostructures consisting of two films are studied. The upper layer involves rare-earth intermetallic nanostructured superlattices consisting of exchange-coupled layers (TbCo2/FeCo)n (TCFC), and the lower layer includes either epitaxial manganite La0.7Sr0.3MnO3 (LSMO) with optimum strontium doping or an epitaxial film of an yttrium–iron garnet Y3Fe5O12 (YIG) with a Bi additive. TCFC is a ferromagnet having high Curie temperature and provides controllable induced magnetic anisotropy. Experimental studies showed that the interlayer interaction of the TCFC/LSMO heterostructure is antiferromagnetic. There was an increase in the FMR line width in the structures due to the flow of a spin current through the interface between two films. There was electric voltage in the TCFC/YIG heterostructure induced in the TCFC intermetallide film, due to an inverse spin Hall effect under ferromagnetic resonance conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971).

    Article  ADS  Google Scholar 

  2. E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).

    Article  ADS  Google Scholar 

  3. B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, Phys. Rev. Lett. 111, 066602 (2013).

    Article  ADS  Google Scholar 

  4. P. Hyde, Bai Lihui, D. M. J. Kumar, B. W. Southern, C.-M. Hu, S. Y. Huang, B. F. Miao, and C. L. Chien, Phys. Rev. B 89, 180404(R) (2014).

  5. F. Yang and P. C. Hammel, J. Phys. D 51, 253001 (2018).

    Article  ADS  Google Scholar 

  6. Y. Gall, J. Ben, F. Socha, N. Tiercelin, V. Preobrazhensky, and P. Pernod, J. Appl. Phys. 87, 5783 (2000).

    Article  ADS  Google Scholar 

  7. E. Quandt, A. Ludwig, D. G. Lord, and C. A. Faunce, J. Appl. Phys. 83, 7267 (1998).

    Article  ADS  Google Scholar 

  8. A. M. Haghiri-Cosnet, and J. P. Renard, J. Phys. D 36, R127 (2003).

    Article  Google Scholar 

  9. N. G. Bebenin, R. I. Zainullina, and V. V. Ustinov, Phys. Usp. 61, 719 (2018).

    Article  ADS  Google Scholar 

  10. G. Y. Luo, C. R. Chang, and J. G. Lin, J. Appl. Phys. 115, 17C508 (2014).

  11. V. A. Atsarkin, B. V. Sorokin, I. V. Borisenko, V. V. Demidov, and G. A. Ovsyannikov, J. Appl. Phys. D 49, 125003 (2016).

    Article  Google Scholar 

  12. Ya. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).

    Article  ADS  Google Scholar 

  13. G. Y. Luo, M. Belmeguenai, Y. Roussigne, C. R. Chang, J. G. Lin, and S. M. Cherif, AIP Adv. 5, 097148 (2015).

    Article  ADS  Google Scholar 

  14. J.-C. Rojas-Sanchez, N. Reyren, P. Laczkowski, W. Savero, J.-P. Attane, C. Deranlot, M. Jamet, J.‑M. George, L. Vila, and H. Jaffrès, Phys. Rev. Lett. 112, 106602 (2014).

    Article  ADS  Google Scholar 

  15. V. A. Atsarkin, I. V. Borisenko, V. V. Demidov, and T. A. Shaikhulov, J. Phys. D 51, 245002 (2018).

    Article  ADS  Google Scholar 

  16. O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. B 82, 214403 (2010).

    Article  ADS  Google Scholar 

  17. T. M. Rezende, R. L. Rodrıguez-Suarez, M. M. Soares, L. H. Vilela-Le, D. L. Domınguez, and A. Azeved, Appl. Phys. Lett. 102, 012402 (2013).

    Article  ADS  Google Scholar 

  18. V. V. Demidov, G. A. Ovsyannikov, A. M. Petrzhik, I. V. Borisenko, A. V. Shadrin, and R. Gunnarsson, J. Appl. Phys. 113, 163909 (2013).

    Article  ADS  Google Scholar 

  19. G. A. Ovsyannikov, A. M. Petrzhik, I. V. Borisenko, A. A. Klimov, Yu. A. Ignatov, V. V. Demidov, and S. A. Nikitov, J. Exp. Theor. Phys. 108, 48 (2009).

    Article  ADS  Google Scholar 

  20. V. F. Shkar’, E. I. Nikolaev, V. N. Sayapin, A. I. Linnik, V. P. Denisenkov, A. M. Grishin, and S. I. Khartsev, Phys. Solid State 47, 1107 (2005).

    Article  ADS  Google Scholar 

  21. A. S. Grishin, G. A. Ovsyannikov, A. Klimov, V. V. Demidov, K. Y. Constantinian, I. V. Borisenko, V. L. Preobrazhensky, N. Tiercelin, and P. Pernod, J. Electron. Mater. 47, 1595 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to K.I. Constantinian, A.M. Petrzhik, V.L. Preobrazhenskii, and A.V. Shadrin for their useful discussion of the results and assistance in this study.

Funding

This work was performed within the framework of the state task and it was partially supported by the Russian Foundation for Basic Research (projects 18-57-16001, 19-07-00143, and 17-02-00145), and the LEMAC-LICS International Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Ovsyannikov.

Ethics declarations

There are no conflicts of interest to declare.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsyannikov, G.A., Demidov, V.V., Shaikhulov, T.A. et al. Magnetic Interactions on Oxide Ferromagnet/Ferromagnetic Intermetallide Interface. Phys. Solid State 61, 1652–1657 (2019). https://doi.org/10.1134/S1063783419090191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419090191

Keywords:

Navigation