Skip to main content
Log in

Hydrogen as an Alkaline Metal. Electron Transport Phenomena

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The pairwise effective interionic interaction, the electrical conductivity and thermal EMF coefficients, and the temperature coefficient of resistivity of liquid metallic hydrogen have been calculated in a wide range of densities and temperatures. This range includes both the values achieved in the experiment and those that exist in the central regions of the giant planets. The perturbation theory in the electron–proton interaction potential is used for this. The electrical resistivity is calculated up to the third-order terms of the perturbation theory. Their role proved to be significant. For the ionic subsystem, a hard-sphere model was used. The packing density is considered one of the adjustable parameters of the theory. It is obtained as a function of density and temperature from the analysis of the effective proton–proton interaction. Its adjustment was carried out at the point of transition of hydrogen to the metallic state. Due to the lack of relevant data for metallic hydrogen, the packing density was taken in the same way as for other alkali metals: lithium, sodium, and potassium at their melting point, obtained from neutron scattering experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. L. Ginzburg, “What problems of physics and astrophysics seem are now to be especially important and interesting (thirty years later, already on the verge of XXI century),” Phys.–Usp. 42, 353–373 (1999).

    Article  CAS  Google Scholar 

  2. E. Wigner and N. V. Huntington, “On the possibility of a metallic modification of hydrogen,” J. Chem. Phys. 3, 764–770 (1935).

    Article  CAS  Google Scholar 

  3. P. Dias Ranga and F. Silvera Isaac, “Observation of the Wigner–Huntington transition to metallic hydrogen,” Science 355, 715–719 (2017).

    Article  CAS  Google Scholar 

  4. S. Deemyad and I. F. Silvera, “The melting line of hydrogen at high pressures,” Phys. Rev. Lett. 100, 155701 (2008).

    Article  Google Scholar 

  5. S. T. Weir, A. C. Mitchell, and W. J. Nellis, “Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. Lett. 76, 1860–1863 (1996).

    Article  CAS  Google Scholar 

  6. W. J. Nellis, S. T. Weir, and A. C. Mitchell, “Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. B 59, 3434–3449 (1999).

    Article  CAS  Google Scholar 

  7. W. J. Nellis, “Metastable solid metallic hydrogen,” Philos. Mag. B 79, 655–671 (1999).

    Article  CAS  Google Scholar 

  8. M. Bastea, A. C. Mitchell, and W. J. Nellis, “High pressure insulator-metal transition in molecular fluid oxygen,” Phys. Rev. Lett. 86, 3108–3112 (2001).

    Article  CAS  Google Scholar 

  9. R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, “Metallization of fluid nitrogen and the Mott transition in highly compressed low-Z fluids,” Phys. Rev. Lett. 90, 245501(4).

  10. V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and A. S. Filimonov, “Conductivity of non-ideal hydrogen plasma in the megabar range of dynamic pressures,” Pis’ma Zh. Eksp. Teor. Fiz. 69, 874–878 (1999).

    Google Scholar 

  11. V. Ya. Ternovoy, F. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev, and A. A. Pyaling, “Thermodynamic properties and electrical conductivity of hydrogen under multiple shock compression to 150 GPa,” Physica B 265, 6–11 (1999).

    Article  Google Scholar 

  12. J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, “The properties of hydrogen and helium under extreme conditions,” Rev. Mod. Phys. 84, 1607–1653 (2012).

    Article  CAS  Google Scholar 

  13. J. McMinis, R. C. Clay, D. Lee, and M. A. Morales, “Molecular to atomic phase transition in hydrogen under high pressure,” Phys. Rev. Lett. 114, 105305 (2015).

    Article  Google Scholar 

  14. S. Azadi, B. Monserrat, W. M. C. Foulkes, and R. J. Needs, “Dissociation of high-pressure solid molecular hydrogen: A quantum Monte Carlo and anharmonic vibrational study,” Phys. Rev. Lett. 112, 165501 (2014).

    Article  Google Scholar 

  15. V. T. Shvets, “High temperature equation of state of metallic hydrogen,” J. Exp. Theor. Phys. 104, 655–660 (2007).

    Article  CAS  Google Scholar 

  16. V. T. Shvets, S. V. Datsko, and Ye. K. Malinovskij, “Metallization degree of hydrogen at a pressure of 1.4 Mbar and a temperature a 3000 K,” Ukr. J. Phys. 52, 70–76 (2007).

    CAS  Google Scholar 

  17. J. Waseda and K. Suzuki, “Characteristics of soft core in pour potential and static structure in liquid metals,” Sci. Rep. Res. Inst., Tokio Univ. A 24, 139–184 (1973).

    CAS  Google Scholar 

  18. E. G. Brovman, Yu. Kholas, and A. Kagan, “On the structure of metallic hydrogen at zero pressure,” Zh. Eksp. Teor. Fiz. 61, 1300–1315 (1972).

    Google Scholar 

  19. E. G. Brovman, Yu. Kagan, and A. Kholas, “Properties of metallic hydrogen under pressure,” Sov. Phys. JETF 35, 783–787 (1972).

    Google Scholar 

  20. W. A. Harrison, Pseudopotentials in Theory of Metals (W. A. Benjamin, 1966; Mir, Moscow, 1968).

  21. V. T. Shvets, Method of Green Functions in Theory of Metals (Latstar, Odessa, 2002).

    Google Scholar 

  22. V. T. Shvets, Extreme State of Matter. Metallization of Gases (Grin’, Kherson) (in Ukrainian).

  23. T. V. Shvets and V. T. Shvets, “Higher-order perturbation-theory effects in the resistance of simple disordered metals,” Phys. Met. Metallogr. 111, 339–354 (2011).

    Article  Google Scholar 

  24. E. G. Brovman and Yu. Kagan, “Phonons in non-transition metals,” Usp. Fiz. Nauk 112, 369–426 (1974).

    Article  CAS  Google Scholar 

  25. D. J. M. Geldart and S. H. Vosko, “The screening function of an interacting electron gas,” Can. J. Phys. 44, 2137–2171 (1966).

    Article  Google Scholar 

  26. L. Ballentine and V. Heine, “On the theory of liquid metals,” Philos. Mag. 9, 617–622 (1964).

    Article  Google Scholar 

  27. V. T. Shvets, S. V. Savenko, and Ye. K. Malinovskii, “Ionic interaction and conductivity of metallic hydrogen,” Condens. Matter Phys. 9, 127–133 (2006).

    Article  Google Scholar 

  28. V. T. Shvets, “Effective proton-proton interaction and metallization of hydrogen,” JETP Lett. 95, 29–32 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Shvets.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvets, V.T. Hydrogen as an Alkaline Metal. Electron Transport Phenomena. Phys. Metals Metallogr. 121, 1–6 (2020). https://doi.org/10.1134/S0031918X20010159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20010159

Keywords:

Navigation