Skip to main content
Log in

Nucleation and Growth of Precipitates in a V-Microalloyed Steel According to Physical Theory and Experimental Results

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Using a theoretical model, the nucleus number and nucleation time were determined for a V‑microalloyed steel. The calculated data has made it possible to plot the nucleus number vs. temperature, nucleation critical time vs. temperature, and precipitate critical radius vs. temperature. The nucleus number was calculated by integration of the nucleation rate expression. On the other hand, an experimental study was performed and the nucleation time vs. temperature was plotted (PTT diagram), thus allowing a comparison between the theoretical values and experimental results. It has been found that the growth of precipitates during precipitation obeys a quadratic growth equation and not a cubic coalescence equation. The experimentally determined growth rate coincides with the theoretically predicted growth rate. The experimental nucleation time is longer than the calculated time due to conceptual differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. K. Xu, B. G. Thomas, and R. O’Malley, “Equilibrium model of precipitation in microalloyed steels,” Metall. Mater. Trans. A 42, 524–539 (2011).

    Article  CAS  Google Scholar 

  2. C. M. Sellars, “Modelling microstructural development during hot rolling,” Mater. Sci. Technol. 6, 1072–1081 (1990).

    Article  CAS  Google Scholar 

  3. W. J. Liu, “A new theory and kinetic modelling of strain-induced precipitation of Nb (CN) in microalloyed austenite,” Metall. Mater. Trans. A 26, 1641–1657 (1995).

    Article  Google Scholar 

  4. M. Gómez, S. F. Medina, A. Quispe, and P. Valles, “Static recrystallization and induced precipitation in a low Nb microalloyed steel,” ISIJ Int. 42, 423–431 (2002).

    Article  Google Scholar 

  5. H. L. Andrade, M. G. Akben, and J. J. Jonas, “Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels,” Metall. Trans. A 14, 1967–1977(1983).

    Article  Google Scholar 

  6. O. Kwon, “A technology for the prediction and control of microstructural changes and mechanical properties in steel,” ISIJ Int. 32, 350–358 (1992).

    Article  CAS  Google Scholar 

  7. M. J. Luton, R. Dorvel, and R. A. Petkovic, “Interaction between deformation, recrystallization and precipitation in niobium steels,” Metall. Trans. A 11, 411–420 (1980).

    Article  Google Scholar 

  8. M. Gómez, L. Rancel, and S. F. Medina, “Effects of aluminium and nitrogen on static recrystallisation in V‑microalloyed steels,” Mater. Sci. Eng., A 506, 165–173 (2009).

    Article  Google Scholar 

  9. O. Kwon and A. DeArdo, “Interactions between recrystallization and precipitation in hot-deformed microalloyed steels,” Acta Metall. Mater. 39, 529–538 (1990).

    Article  Google Scholar 

  10. B. Dutta, E. Valdes, and C. M. Sellars, “Mechanisms and kinetics of strain induced precipitation of Nb(C,N) in austenite,” Acta Metall. Mater. 40, 653–662 (1992).

    Article  CAS  Google Scholar 

  11. S. Verninckt, K. Verbeken, P. Thibaux, and Y. Houbaert, “Recrystallization- precipitation interaction during austenite hot deformation of a Nb microalloyed steel,” Mater. Sci. Eng., A 528, 5519–5528 (2011).

    Article  Google Scholar 

  12. I. Andersen and O. Grong, “Analytical modelling of grain-growth in metals and alloys in the presence of growing and dissolving precipitates .1. Normal grain-growth,“ Acta Metall. Mater. 43, 2673–2688 (1995).

    Article  CAS  Google Scholar 

  13. H. S. Zurob, Y. Brechet, and G. Purdy, “A model for the competition of precipitation and recrystallization in deformed austenite,”Acta Mater. 49, 4183–4190 (2001).

    Article  CAS  Google Scholar 

  14. P. Maugis and M. Gouné, “Kinetics of vanadium carbonitride precipitation in steel: A computer model,” Acta Mater. 53, 3359–3367 (2005).

    Article  CAS  Google Scholar 

  15. M. Mukherjee, U. Prahl, and W. Bleck, “Modelling the strain-induced precipitation kinetics of vanadium carbonitride during hot working of precipitation-hardened of ferritic-pearlitic steels,” Acta Mater. 71, 234–254 (2014).

    Article  CAS  Google Scholar 

  16. B. Dutta, E. J. Palmiere, and C. M. Sellars, “Modelling the kinetics of strain induced precipitation in Nb microalloyed steels,” Acta Mater. 49, 785–794 (2001).

    Article  CAS  Google Scholar 

  17. K. C. Russel, “Nucleation in solids: the induction and steady state effects,” Adv. Colloid Interface Sci. 13, 205–318 (1980).

    Article  Google Scholar 

  18. R. Wagner, R. Kampmann, and P. W. Voorhees, “Homogeneous Second Phase Precipitation,” in Phase Transformations in Materials, Materials Science Monographs, Ed. by G. Kostorz (Wiley–VCH, Weinheim, 1991).

    Google Scholar 

  19. S. F. Medina, A. Quispe, and M. Gomez, “New model for strain induced precipitation kinetics in microalloyed steels,” Metall. Mater. Trans. A 45, 1524–1539 (2014).

    Article  CAS  Google Scholar 

  20. M. Perez, M. Dumont, and D. Acevedo-Reyes, “Implementation of classical nucleation and growth theories for precipitation,” Acta Mater. 56, 2119–2132 (2008).

    Article  CAS  Google Scholar 

  21. N. Fujita and H. K. D. H. Bhadeshia, “Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity and coarsening,” Mater. Sci. Tecnol. 17, 403–408 (2001).

    Article  CAS  Google Scholar 

  22. A. E. Salas-Reyes, I. Mejía, A. Bedolla-Jacuinde, A. Boulaajaj, J. Calvo, and J. M. Cabrera, “Hot ductility behavior of high-Mn austenitic Fe–22Mn–1.5Al–1.5Si–0.45C TWIP steels microalloyed with Ti and V,” Mater. Sci. Eng., A 611, 77–89 (2014).

    Article  CAS  Google Scholar 

  23. I. Mejía, A. E. Salas-Reyes, A. Bedolla-Jacuinde, J. Calvo, and J. M. Cabrera, “Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel,” Mater. Sci. Eng., A 616, 229–239 (2014).

    Article  Google Scholar 

  24. F. Perrard, A. Deschamps, and P. Maugis, “Modelling the precipitation of NbC on dislocations in α-Fe,” Acta Mater. 55, 1255–1266 (2007).

    Article  CAS  Google Scholar 

  25. S. F. Medina, C. A. Hernández, and J. Ruiz, “Modelling austenite flow curves in low alloy and microalloyed steels,” Acta Mater. 44, 155–163 (1996).

    Article  Google Scholar 

  26. T. Gladman, The Physical Metallurgy of Microalloyed Steels (The Institute of Materials, London, 1997).

    Google Scholar 

  27. M. Perez, E. Courtois, D. Acevedo, T. Epicier, and P. Maugis, “Precipitation of niobium carbonitrides in ferrite: chemical composition measurements and thermodynamic modelling,” Philos. Mag. Lett. 87, 645–656 (2007).

    Article  CAS  Google Scholar 

  28. M. Perez and A. Deschamps, “Microscopic modelling of simultaneous two phase precipitation: application to carbide precipitation in low carbon steels,” Mater. Sci. Eng., A 360, 214–219 (2003).

    Article  Google Scholar 

  29. H. Oikawa, “Lattice diffusion in iron—A review,” Trans. Iron Steel Inst. Jpn. 68, 1489–1497 (1982).

    Article  CAS  Google Scholar 

  30. J. Ardell, “The effect of volume fraction on particle coarsening: theoretical considerations,” Acta Metall. 20, 61–71 (1972).

    Article  Google Scholar 

  31. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the solubility of carbonitrides in low-carbon low-alloy steels,” Phys. Met. Metallogr. 117, 1277–1287 (2016).

    Article  Google Scholar 

  32. A. Deschamps, and Y. Brechet, “Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modelling of precipitation kinetics and yield stress,” Acta Mater. 47, 293–305 (1999).

    Article  CAS  Google Scholar 

  33. Z. Baochun, Z. Tan, L. Guiyan, and L. Qiang, “Metadynamic recrystallizaton behavior of a vanadium–nitrogen microalloyed steel,” Met. Mater. Int. 21, 692–697 (2015).

    Article  Google Scholar 

  34. S. F. Medina, L. Rancel, M. Gómez, R. Ishak, and M. De Sanctis, “Intragranular nucleation of ferrite on precipitates and grain refinement in a hot deformed V‑microalloyed steel,” ISIJ Int. 48, 1063–1608 (2008).

    Article  Google Scholar 

  35. M. Gomez, L. Rancel, and S. F. Medina, “Effects of aluminium and nitrogen on static recrystallisation in V‑microalloyed steels,” Mater. Sci. Eng., A, 506, 165–173 (2009).

    Article  Google Scholar 

  36. S. F. Medina, “From heterogeneous to homogeneous nucleation for precipitation in austenite of microalloyed steels,” Acta Mater. 84, 202–207 (2015).

    Article  CAS  Google Scholar 

  37. W. Hui, S. Chen, Y. Zhang, C. Shao, and H. Dong, “Effect of vanadium on the high-cycle fatigue fracture properties of medium-carbon microalloyed steel for fracture splitting connecting rod,” Mater. Des. 66, 227–234 (2015).

    Article  CAS  Google Scholar 

  38. V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Medina.

Ethics declarations

The authors gratefully acknowledge the financial support of Spanish Ministry of Economy and Competitiveness through the project ref. MAT2011-29039-C02-02.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, S.F., Valles, P., Calvo, J. et al. Nucleation and Growth of Precipitates in a V-Microalloyed Steel According to Physical Theory and Experimental Results. Phys. Metals Metallogr. 121, 32–40 (2020). https://doi.org/10.1134/S0031918X2001010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2001010X

Keywords:

Navigation