Skip to main content
Log in

Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Kinetic calculations of the evolution of carbonitride precipitates in low-alloy steels with Nb and Ti have been performed for different temperatures of austenitizing. Based on the data of the kinetic simulation of the ensembles of carbonitride precipitates, the expected size of the austenite grain has been calculated using different models. The results obtained have been compared with experimental data. It has been shown that the best agreement with the experiment is achieved for the high-temperature region (1150–1250°C) when using the Gladman model (with the parameter Z = 2) with allowance for the polydispersity of the ensemble of precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hauman, “Welded structural steels,” in Werkstoffkunde Eisen und Stahl Ed. by W. Dahl and W. Anton (Verl. Stahleisen, Düsserdoff, 1983; Metallurgy, Moscow, 1986).

    Google Scholar 

  2. M. I. Gol’dshtein, V. V. Popov, A. E. Aksel’rod, and L. P. Zhitova, “Effect of fraction and size of dispersed carbonitrides on grain size,” Metalloved. Term. Obrab. Met., No. 8, 2–7 (1989).

    Google Scholar 

  3. V. V. Popov, Simulation of Carbonitride Transformations at Steel Thermal Treatment (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2003) [in Russian].

    Google Scholar 

  4. V. V. Popov, “Simulation of the evolution of precipitates in dilute alloys,” Phys. Met. Metallogr. 93, 303–309 (2002).

    Google Scholar 

  5. V. V. Popov, “Simulation of dissolution and coarsening of MnS precipitates in Fe–Si,” Philos. Mag. A 82, 17–27 (2002).

    Article  Google Scholar 

  6. V. V. Popov and I. I. Gorbachev, “Simulation of the evolution of precipitates in multicomponent alloys,” Phys. Met. Metallogr. 95, 417–426 (2003).

    Google Scholar 

  7. V. V. Popov and I. I. Gorbachev, “Numerical simulation of carbide and nitride precipitate evolution in steels,” Mater. Werkstofftechnik 36, 477–481 (2005).

    Article  Google Scholar 

  8. V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).

    Article  Google Scholar 

  9. I. I. Gorbachev, V. V. Popov, and E. N. Akimova, “Computer simulation of the diffusion interaction between carbonitride precipitates and austenitic matrix with allowance for the possibility of variation of their composition,” Phys. Met. Metallogr. 102, 18–28 (2006).

    Article  Google Scholar 

  10. V. Popov and I. Gorbachev, “Simulation of precipitate evolution in steels,” Defect Diffus. Forum 263, 171–176 (2007).

    Google Scholar 

  11. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of evolution of precipitates of two carbonitride phases in Nband Ti-containing steels during isothermal annealing,” Phys. Met. Metallogr. 114, 741–751 (2013).

    Article  Google Scholar 

  12. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of precipitate ensemble evolution in steels with V and Nb,” Phys. Met. Metallogr. 116, 356–366 (2015).

    Article  Google Scholar 

  13. P. A. Manohar, M. Ferry, and T. Chandara, “Five decades of the Zener equation,” ISIJ Int. 38, 913–924 (1998).

    Article  Google Scholar 

  14. G. S. Thompson, “Kinetic model of particle-inhibited grain growth, A Dissertation for the Degree of Doctor of Philosophy (Lehigh University, 2001).

    Google Scholar 

  15. C. Zener, “Theory of growth of spherical precipitates from solid solution,” J. Appl. Phys. 20, 950–953 (1949).

    Article  Google Scholar 

  16. T. Gladman, “On the theory of the effect of precipitate particles on grain growth in metals,” Proc. R. Soc. (London), Ser. A 294, 298–309 (1966).

    Article  Google Scholar 

  17. T. Nishizawa, I. Ohnuma, and K. Ishida, “Examination of the Zener relationship between grain size and particle dispersion,” Mater. Trans., JIM 38, 950–956 (1997).

    Article  Google Scholar 

  18. P. R. Rios, “Overview No. 62: A theory for grain boundary pinning by particles,” Acta Metall. 35, 2805–2814 (1987).

    Article  Google Scholar 

  19. D. J. Srolovitz, M. P. Anderson, G. S. Grest, and P. S. Sahni, “Computer simulation of grain growth—I. Kinetics,” Acta Metall. 32, 783–791 (1984).

    Article  Google Scholar 

  20. M. Hillert, “Inhibition of grain growth by secondphase particles,” Acta Metal. 36, 3177–3181 (1988).

    Article  Google Scholar 

  21. N. Gao and T. N. Baker, “Austenite grain growth behavior of microalloyed Al–V–N and Al–V–Ti–N steels,” ISIJ Int. 38, 744–751 (1998).

    Article  Google Scholar 

  22. M. Maalekian, “In situ measurement and modeling of austenitic grain growth in a Ti/Nb microalloyed steel,” Acta Mater. 60, 1015–1026 (2012).

    Article  Google Scholar 

  23. K. Banerjee, M. Militzer, M. Perez, and H. Wang, “Nonisothermal austenitic grain growth kinetics in a microalloyed X80 linepipe steel,” Metall. Mater. Trans., A 41, 3161–3173 (2010).

    Article  Google Scholar 

  24. M. I. Gol’dshtein, L. P. Zhitova, and V. V. Popov, “Effect of titanium carbonitrides on the structure and properties of low-carbon steels,” Fiz. Met. Metalloved. 51, 1245–1252 (1981).

    Google Scholar 

  25. S. Matsuda and N. Okumura, “"Effect of distribution of TiN precipitate particles on the austenitic grain size of low carbon low alloy steels,” Trans. ISIJ 18, 198–205 (1978).

    Google Scholar 

  26. S. F. Medina, M. Chapa, P. Valles, A. Ouispe, and M. I. Vega, “Influence of Ti and N contents on austenitic grain control and precipitate size in structural steels,” ISIJ Int. 39, 930–936 (1999).

    Article  Google Scholar 

  27. L. P. Zhang, C. L. Davis, and M. Strangwood, “Effect of TiN particles and microstructure on fracture toughness in simulated heat-affected zones of a structural steel,” Metall. Mater. Trans. A 30, 2089–2096 (1999).

    Article  Google Scholar 

  28. M. Charleux and W. J. Poole, “Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel,” Metall. Mater. Trans. A 32, 1635–1647 (2001).

    Article  Google Scholar 

  29. Certificate of State Registration of a Program for an Electronic Computer 2011618874 (IMP Equilibrium, 15.11.2011).

  30. V. V. Popov and I. I. Gorbachev, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: I. Description of thermodynamic properties. Computation procedure,” Phys. Met. Metallogr. 98, 344–354 (2004).

    Google Scholar 

  31. I. I. Gorbachev and V. V. Popov, “Analysis of the solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: III. Solubility of carbides, nitrides, and carbonitrides in the Fe-Ti-C, Fe-Ti-N, and Fe-Ti-C-N systems,” Phys. Met. Metallogr. 108, 484–495 (2009).

    Article  Google Scholar 

  32. I. I. Gorbachev and V. V. Popov, “Analysis of the solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: IV. Solubility of carbides, nitrides, and carbonitrides in the Fe.Nb-C, Fe-Nb-N, and Fe-Nb-C-N systems,” Phys. Met. Metallogr. 110, 52–61 (2010).

    Article  Google Scholar 

  33. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic simulation of the formation of carbonitrides in steels with Nb and Ti,” Phys. Met. Metallogr. 113, 687–695 (2012).

    Article  Google Scholar 

  34. J. Irvin and T. N. Baker, “Effect of rolling deformation on niobium carbide particle size distribution in low-carbon steel,” Met Sci. 13, 228–237 (1979).

    Article  Google Scholar 

  35. W.-B. Lee, S.-G. Hong, C.-G. Park, and S. H. Park, “Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo,” Metall. Mater. Trans. A 33, 1689–1698 (2002).

    Article  Google Scholar 

  36. Certificate of State Registration of a Program for an Electronic Computer 2014616057 (EvoPCE, 10.06.2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gorbachev.

Additional information

Original Russian Text © I.I. Gorbachev, A.Yu. Pasynkov, V.V. Popov, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 11, pp. 1184–1191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachev, I.I., Pasynkov, A.Y. & Popov, V.V. Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates. Phys. Metals Metallogr. 116, 1127–1134 (2015). https://doi.org/10.1134/S0031918X1511006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1511006X

Keywords

Navigation