Skip to main content
Log in

Giant Van Hove Density of States Singularities and Anomalies of Electron and Magnetic Properties in Cubic Lattices

  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Densities of states for simple (sc) and base-centered (bcc) cubic lattices with account of nearest and next-nearest neighbour hopping integrals t and t' are investigated in detail. It is shown that at values of τ ≡ t'/t = τ*, corresponding to the change in isoenergetic surface topology, the formation of Van Hove k lines takes place. At small deviations from these special values, the weakly dispersive spectrum in the vicinity of Van Hove lines is replaced by a weak k-dependence in the vicinity of a few van Hove points which possess huge masses proportional to |τ – τ*|–1. The singular contributions to the density of states that originate from Van Hove points and lines are considered, as well as the change in the topology of isoenergetic surfaces in the k-space with the variation of τ. The closed analytical expressions for the density of states as a function of energy and τ in terms of elliptic integrals and power-law asymptotics at τ = τ* are obtained. Apart from the case of sc lattice with small τ (maximum of density of state corresponds to the energy level of X k-point), maximal value of the density of states is always achieved at energies corresponding to innerk-points of the Brillouin zone positioned in high-symmetry directions, and rather than at zone faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. J. Jelitto, “The density of states of some simple excitations in solids,” J. Phys. Chem. Solids 30, 609–626 (1969).

    Article  CAS  Google Scholar 

  2. R. H. Swendsen and H. Callen, “Green’s functions of the face-centered-cubic Heisenberg ferromagnet with second-neighbor interactions,” Phys. Rev. B 6, 2860–2875 (1972).

    Article  CAS  Google Scholar 

  3. S. V. Vonsovskii, M. I. Katsnelson, and A. V. Trefilov, “Localized and itinerant behavior of electrons in metals,” Phys. Met. Metallogr. 76, 247–299 (1993).

    Google Scholar 

  4. M. I. Katsnel’son, G. V. Peschanskikh, and A. V. Trefilov, “The singularities in the density of electron states and their effect on the elasticity moduli in alkaline earth metals,” Sov. Phys. Solid State 32, 272 (1990).

    Google Scholar 

  5. V. L. Moruzzy, J. P. Janak, and A. R. Williams, Calculated Electronic Properties of Metals (Plenum, New York, 1978).

    Google Scholar 

  6. D. A. Papacostantopoulos, Handbook of Band Structure of Elemental Solids (Plenum, New York, 1986).

    Google Scholar 

  7. A. Hausoel, M. Karolak, E. Sasioglu, A. Lichtenstein, K. Held, A. Katanin, A. Toschi, and G. Sangiovanni, “Local magnetic moments in iron and nickel at ambient and Earth’s core conditions,” Nature Commun. 8, 16062 (2017).

    Article  CAS  Google Scholar 

  8. G. Santi, S. B. Dugdale, and T. Jarlborg, “Longitudinal spin fluctuations and superconductivity in ferromagnetic ZrZn2 from ab initio calculations, Phys. Rev. Lett. 87, 247004 (2001)

    Article  CAS  Google Scholar 

  9. A. S. Hamid, A. Uedono, Zs. Major, T. D. Haynes, J. Laverock, M. A. Alam, S. B. Dugdale, and D. Fort, “Electronic structure and Fermi surface of the weak ferromagnet Ni3Al,” Phys. Rev. B 84, 235107 (2011).

    Article  Google Scholar 

  10. P. G. Niklowitz, F. Beckers, G. G. Lonzarich, G. Knebel, B. Salce, J. Thomasson, N. Bernhoeft, D. Braithwaite, and J. Flouquet, “Spin-fluctuation-dominated electrical transport of Ni3Al at high pressure,” Phys. Rev. B 72, 024424 (2005).

    Article  Google Scholar 

  11. J. Inoue, Electronic structure and magnetism of Y–M (M = Mn, Fe, Co and Ni),” Physica B 149, 376 (1988);

    Article  CAS  Google Scholar 

  12. Y. Nishihara and S. Ogawa “Itinerant electron ferromagnetism in Y2Ni7,” J. Phys. Soc. Jpn. 60, 300–303 (1991).

    Article  CAS  Google Scholar 

  13. D. J. Singh, Electronic structure and weak itinerant magnetism in metallic Y2Ni7, Phys. Rev. B 92, 174403 (2015).

    Article  Google Scholar 

  14. M. I. Katsnel’son and A. V. Trefilov, “Electronic phase transitions due to correlation effects,” JETP Lett. 40, 1092–1095 (1984).

    Google Scholar 

  15. M. I. Katsnelson and A. V. Trefilov, “Anomalies in properties of metals and alloys due to electron correlations,” Phys. Lett. A 109, 109–112 (1985).

    Article  Google Scholar 

  16. M. I. Katsnelson and A. V. Trefilov, “Anomalies of electronic and lattice properties of metals and alloys, caused by screening anomalies,” Physica B 163, 182 (1990); “Anomalies caused in phonon spectra by charge density fluctuations,” JETP Lett. 42, 393–396 (1985).

    CAS  Google Scholar 

  17. V. Yu. Irkhin, M. I. Katsnelson, and A. V. Trefilov, “On the magnetic contribution to lattice properties of itinerant ferromagnets: the role of Van Hove electron spectrum singularities,” J. Magn. Mag. Mater. 117, 210–218 (1992).

    Article  CAS  Google Scholar 

  18. T. Morita and T. Horiguchi, Calculation of the lattice Green’s function for the bcc, fcc, and rectangular lattices, J. Math. Phys. 12, 986–992 (1971).

    Article  Google Scholar 

  19. S. Katsura and T. Horiguchi, “Lattice Green’s function for the body-centered cubic lattice,” J. Math. Phys. 12, 230–231 (1971).

    Article  Google Scholar 

  20. Yu. A. Izyumov, “Strongly correlated electrons: the tJ model,” Phys.–Usp. 40, 445–476 (1997).

    Article  Google Scholar 

  21. A. Damascelli, Z. Hussain, and Z.-X. Shen, “Angle-resolved photoemission studies of the cuprate superconductors,” Rev. Mod. Phys. 75, 473–541 (2003).

    Article  CAS  Google Scholar 

  22. M. A. Timirgazin, P. A. Igoshev, A. K. Arzhnikov, and V. Yu. Irkhin, “Metal–insulator transition in the Hubbard model: Correlations and spiral magnetic structures,” J. Low. Temp. Phys. 185, 651–656 (2016).

    Article  CAS  Google Scholar 

  23. M. A. Timirgazin, P. A. Igoshev, A. K. Arzhnikov, and V. Yu. Irkhin, “Magnetic states, correlation effects and metal-insulator transition in fcc lattice,” J. Phys.: Condens. Matter 28, 505601 (2016).

    CAS  Google Scholar 

  24. P. A. Igoshev and V. Yu. Irkhin, “Metal–insulator transition in the presence of Van Hove singularities for bipartite lattices,” J. Exp. Theor. Phys. 128, 909–918 (2019).

    Article  CAS  Google Scholar 

  25. P. E. Blochl, O. Jepsen, and O. K. Andersen, “Improved tetrahedron method for Brillouin-zone integrations,” Phys. Rev. B 49, 16223–16233 (1994).

    Article  CAS  Google Scholar 

  26. A. A. Stepanenko, D. O. Volkova, P. A. Igoshev, and A. A. Katanin, “Kohn anomalies in momentum dependence of magnetic susceptibility of some three-dimensional systems,” J. Exp. Theor. Phys. 125, 879–889 (2017).

    Article  CAS  Google Scholar 

  27. L. Van Hove, “The occurrence of singularities in the elastic frequency distribution of a crystal,” Phys. Rev. 89, 1189–1193 (1953).

    Article  CAS  Google Scholar 

  28. M. Fleck, A. M. Oles, and L. Hedin, “Magnetic phases near the Van Hove singularity in s- and d-band Hubbard models,” Phys. Rev. B 56, 3159–3166 (1997).

    Article  CAS  Google Scholar 

  29. P. A. Igoshev, E. E. Kokorina, and I. A. Nekrasov, “Investigation of the magnetocaloric effect correlated metallic systems with Van Hove singularities in the electron spectrum,” Phys. Met. and Metallogr. 118, 207–216 (2017).

    Article  CAS  Google Scholar 

  30. T. Moriya, Spin fluctuations in itinerant electron magnetism (Springer, Berlin–Heidelberg, 1985).

    Book  Google Scholar 

  31. P. A. Igoshev, A. V. Efremov, and A. A. Katanin, “Magnetic exchange in α-iron from ab initio calculations in the paramagnetic phase,” Phys. Rev. B 91, 195123 (2015).

    Article  Google Scholar 

  32. M. Ulmke, “Ferromagnetism in the Hubbard model on fcc-type lattices,” Eur. Phys. J. B 1, 301–304 (1998).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.I. Katsnelson and A.O. Anokhin for useful discussion.

Funding

The research was carried out within the state assignment of FASO of Russia (theme Quantum no. AAAA-A18-118020190095-4) and with the support by Program 211 of the Government of the Russian Federation (Agreement 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Igoshev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igoshev, P.A., Irkhin, V.Y. Giant Van Hove Density of States Singularities and Anomalies of Electron and Magnetic Properties in Cubic Lattices. Phys. Metals Metallogr. 120, 1282–1290 (2019). https://doi.org/10.1134/S0031918X19130088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19130088

Navigation