Skip to main content
Log in

Electron Spectrum Topology and Giant Singularities of the Electron Density of States in Cubic Lattices

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The topology of energy surfaces in reciprocal space is studied in detail for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices in the tight-binding approximation, taking into account hopping integrals t and t′ between the nearest and next-nearest neighbor sites, respectively. It is shown that lines and surfaces formed by van Hove k points can arise at values τ = t′/t = τ* corresponding to a change in the surface topology. At a small deviation of τ from these special values, the spectrum near the van Hove line (surface) only slightly depends on k. This corresponds to a giant effective mass proportional to |τ - τ*|−1 near several van Hove points. Singular contributions to the density of states near these special t values are analyzed and explicit expressions are obtained for the density of states in terms of elliptic integrals. It is shown that, in some cases, the maximum density of states is achieved at energies corresponding to k points in high-symmetry directions inside the Brillouin zone rather than at its edges. The corresponding contributions to electronic and magnetic characteristics are discussed, in particular, in application to itinerant weak magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Vonsovskii, M. I. Katsnel’son, and A. V. Trefilov, Fiz. Met. Metalloved. 76 (3), 3 (1993).

    Google Scholar 

  2. M. I. Katsnel’son, G. V. Peschanskikh, and A. V. Trefilov, Sov. Phys. Solid State 32, 272 (1990).

    Google Scholar 

  3. V. L. Moruzzy, J. P. Janak, and A. R. Williams, Calculated Electronic Properties of Metals (Plenum, New York, 1978).

    Google Scholar 

  4. D. A. Papacostantopoulos, Handbook of Band Structure of Elemental Solids (Plenum, New York, 1986).

    Google Scholar 

  5. A. Hausoel, M. Karolak, E. Sasioglu, A. Lichtenstein, K. Held, A. Katanin, A. Toschi, and G. Sangiovann, Nat. Commun. 8, 16062 (2017).

    Article  ADS  Google Scholar 

  6. M. I. Katsnel’son and A. V. Trefilov, JETP Lett. 40, 1092 (1984).

    ADS  Google Scholar 

  7. M. I. Katsnel’son and A. V. Trefilov, JETP Lett. 42, 485 (1985).

    ADS  Google Scholar 

  8. L. van Hove, Phys. Rev. 89, 1189 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. J. Jelitto, J. Phys. Chem. Solids 30, 609 (1969).

    Article  ADS  Google Scholar 

  10. S. Katsura and T. Horiguchi, J. Math. Phys. 12, 230 (1971).

    Article  ADS  Google Scholar 

  11. P. A. Igoshev and V. Yu. Irkhin, J. Exp. Theor. Phys. 128, 909 (2019).

    Article  ADS  Google Scholar 

  12. R. H. Swendsen and H. Callen, Phys. Rev. B 6, 2860 (1972).

    Article  ADS  Google Scholar 

  13. M. Ulmke, Eur. Phys. J. B 1, 301 (1998).

    Article  ADS  Google Scholar 

  14. S. V. Vonsovsky, Yu. P. Irkhin, V. Yu. Irkhin, and M. I. Katsnelson, J. Phys. Coll. 49 (C8), 253 (1988).

    Google Scholar 

  15. G. Santi, S. B. Dugdale, and T. Jarlborg, Phys. Rev. Lett. 87, 247004 (2001).

    Article  ADS  Google Scholar 

  16. A. S. Hamid, A. Uedono, Zs. Major, T. D. Haynes, J. Laverock, M. A. Alam, S. B. Dugdale, and D. Fort, Phys. Rev. B 84, 235107 (2011).

    Article  ADS  Google Scholar 

  17. J. Inoue, Phys. B (Amsterdam, Neth.) 149, 376 (1988).

    Article  Google Scholar 

  18. Y. Nishihara and S. Ogawa, J. Phys. Soc. Jpn. 60, 300 (1991).

    Article  ADS  Google Scholar 

  19. D. J. Singh, Phys. Rev. B 92, 174403 (2015).

    Article  ADS  Google Scholar 

  20. P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Article  ADS  Google Scholar 

  21. A. A. Stepanenko, D. O. Volkova, P. A. Igoshev, and A. A. Katanin, J. Exp. Theor. Phys. 125, 879 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to M.I. Katsnelson, A.O. Anokhin, and A.A. Katanin for valuable discussions.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. AAAA-A18-118020190095-4, project Quantum) and by the Government of the Russian Federation (program 211, state contract no. 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Igoshev.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 11, pp. 741–747.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igoshev, P.A., Irkhin, V.Y. Electron Spectrum Topology and Giant Singularities of the Electron Density of States in Cubic Lattices. Jetp Lett. 110, 727–733 (2019). https://doi.org/10.1134/S0021364019230085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019230085

Navigation