Skip to main content
Log in

Electronic Structure and Optical Properties of the Co2NiAl Heusler Alloy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The frequency dependences of the real part ε1(ω) and imaginary part ε2(ω) of the complex dielectric constant of the Co2NiAl Heusler alloy are studied in a region of spectrum of 0.08–5 eV. It was found that the character of variations of the spectral parameters of the Co2NiAl ally is typical of media with metallic conductivity. In the IR region, the mechanism of intraband acceleration of electrons by the field of light wave dominates. The contribution of interband electron transitions is marked even at the energies E ≥ 0.15 eV. Results of the investigations are discussed based on the performed electronic structure calculations. It is shown that the main contribution to the resulting optical conductivity dependence is made by interband electron transitions in the band with spins opposite to the magnetization direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. A. De Groot, F. M. Mueller, P. G. Van Engen, and K. H. J. Buschow, “New class of materials: Half-metallic ferromagnets,” Phys. Rev. Lett. 50, 2024–2027 (1983).

    Article  Google Scholar 

  2. L. Bainsla and K. G. Suresh, “Spin polarization studies in halfmetallic Co2TiX (X = Ge and Sn) Heusler alloys,” Curr. Appl. Phys. 16, 68–72 (2016).

    Article  Google Scholar 

  3. E. I. Shreder, A. A. Makhnev, A. V. Lukoyanov, and K. G. Suresh, “Optical properties and the electronic structure of Co2TiGe and Co2TiSn Heusler alloys,” Phys. Met. Metallogr. 118, 965–969 (2017).

    Article  Google Scholar 

  4. E. I. Shreder, A. V. Lukoyanov, and V. V. Marchenkov, “Optical properties and electronic structure of alloys Co2Cr1 – xFexAl (x = 0, 0.4, 0.6, 1),” Phys. Solid State 58, 164–169 (2016).

    Article  Google Scholar 

  5. S. C. Lee, T. D. Lee, P. Blaha, and K. Schwarz, “Magnetic and half-metallic properties of the full-Heusler alloys Co2TiX (X = Al, Ga, Si, Ge, Sn, Sb),” J. Appl. Phys. 97, 10c307 (2005).

  6. L. Bainsla, K. G. Suresh, A. K. Nigam, M. M. Raja, B. S. D. Ch. Varaprasad, Y. K. Takahashi, and K. Hono, “High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy,” J. Appl. Phys. 116, No. 203902 (2014).

  7. T. M. Nakatani, A. Rajanikanth, Z. Gercsi, Y. K. Takahashi, K. Inomata, and K. Hono, “Structure, magnetic property, and spin polarization of Co2FeAlxSi1 – x Heusler alloys,” J. Appl. Phys. 102, 033916 (2007).

    Article  Google Scholar 

  8. H. C. Kandpal, G. H. Fecher, and C. Felser, “Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds,” J. Phys. D: Appl. Phys. 40, 1507–1523 (2007).

    Article  Google Scholar 

  9. R. Y. Umetsu, K. Kobayashi, A. Fujita, R. Kainuma, and K. Ishida, “Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy,” J. Appl. Phys. 103, 07D718 (2008).

  10. N. I. Kourov, V. V. Marchenkov, Yu. A. Perevozchikova, A. V. Korolev, and H. W. Weber, “High-field magnetization of band ferromagnets Co2 YAl (Y = Ti, V, Cr, Mn, Fe, Ni),” Phys. Solid State 58, 2434–2437 (2016).

    Article  Google Scholar 

  11. N. I. Kourov, V. V. Marchenkov, A. V. Korolev, A. V. Lukoyanov, A. A. Shirokov, and Yu. A. Perevozchikova, Features of electronic properties of band ferromagnets Co2MeAl and Fe2MeAl (Me = Ti, V, Cr, Mn, Fe, Ni), Mater. Res. Express 4, 116102 (2017).

    Article  Google Scholar 

  12. N. I. Kourov, V. V. Marchenkov, V. A. Kazantsev, and Yu. A. Perevozchikova, “Thermal expansion of Co2MAl (M = Ti, V, Cr, Mn, Fe, Ni) band ferromagnets,” Phys. Solid State 60, 622–625 (2018).

    Article  Google Scholar 

  13. H. E. Karaca, I. Karaman, Y. I. Chumlyakov, D. C. Lagoudas, and X. Zhang, “Compressive response of a single crystalline CoNiAl shape memory alloy,” Scr. Mater. 51, 261–266 (2004).

    Article  Google Scholar 

  14. K. Oikawa, T. Ota, F. Gejima, T. Ohmori, R. Kainuma, and K. Ishida, “Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems,” Mater. Trans. 42, 2472–2475 (2001).

    Article  Google Scholar 

  15. A. V. Sokolov, Optical Properties of Metals (GIFML, Moscow, 1961) [in Russian].

    Google Scholar 

  16. A. O. Shorikov, A. V. Lukoyanov, M. A. Korotin, and V. I. Anisimov, “Magnetic state and electronic structure of the δ and α phases of metallic Pu and its compounds,” Phys. Rev. B 72, 024458 (2005).

    Article  Google Scholar 

  17. S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and S. S. P. Parkin, “Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance,” Phys. Rev. Mater. 1, 024402 (2017).

    Article  Google Scholar 

  18. Y.-I. Matsushita, G. Madjarova, J. K. Dewhurst, S. Shallcross, C. Felser, S. Sharma, and E. K. U. Gross, “Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: a systematic study,” J. Phys. D: Appl. Phys. 50, 095002 (2017).

Download references

ACKNOWLEDGMENTS

This work was performed within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation (theme Electron, no. АААА-А18-118020190098-5) and was supported in part by the Russian Foundation for Basic Research (project no. 16-52-48012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Shreder.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreder, E.I., Lukoyanov, A.V., Makhnev, A.A. et al. Electronic Structure and Optical Properties of the Co2NiAl Heusler Alloy. Phys. Metals Metallogr. 120, 729–732 (2019). https://doi.org/10.1134/S0031918X19080155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19080155

Keywords:

Navigation