Skip to main content
Log in

Relationship between Structure, Phase Composition, and Physicomechanical Properties of Quenched Ti–Nb Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Transmission electron microscopy, X-ray diffraction analysis, and microindentation were used to study the changes in the structure, phase composition, elastic modulus, and hardness of the Ti–(9.6–34) at % Nb alloys after quenching in water from heating temperatures corresponding to the β region. The relationship between the physicomechanical properties (elastic modulus, microhardness) and the volume fraction of metastable phases detected in Ti–Nb alloys after quenching from the β region has been shown. It has been noted that the Ti–13.3 at % Nb alloy with a structure in which the ω phase with anomalous morphology in the form of massive plates is formed after quenching is characterized by maximum values of elastic modulus and microdurometric characteristics. The growth of the elastic modulus of the metastable β solid solution with increasing niobium content in alloys with a decrease in the average distance between the niobium–niobium atoms in the bcc structure has been justified. The possibility for calculating the elastic modulus of quenched Ti–Nb alloys based on the additive contributions of the elastic moduli of phases detected after quenching, which are proportional to their volume fractions has been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada, “Beta Ti alloys with low Young’s modulus,” Mater. Trans. 45, 2776–2779 (2004).

    Article  Google Scholar 

  2. S. V. Grib, A. G. Illarionov, A. A. Popov, and O. M. Ivasishin, “Development and investigation of the structure and physical and mechanical properties of low-modulus Ti–Zr–Nb alloys,” Phys. Met. Metallogr. 115, 600–608 (2014).

    Article  Google Scholar 

  3. V. A. Sheremetyev, S. D. Prokoshkin, V. Brailovski, S. M. Dubinskiy, A. V. Korotitskiy, M. R. Filonov, and M. I. Petrzhik, Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti–Nb–Zr and Ti–Nb–Ta shape-memory alloys, Phys. Met. Metallogr. 116, 413–442 (2015).

    Article  Google Scholar 

  4. S. G. Fedotov and O. K. Belousov, “Elastic constants in titanium–niobium system,” Fiz. Met. Metalloved. 17, 732–736 (1964).

    Google Scholar 

  5. A. G. Illarionov, N. V. Shchetnikov, S. M. Illarionova and A. A. Popov, “Effect of heating temperature on the formation of structure and phase composition of a biocompatible alloy Ti–6AL–4V–ELI subjected to equal-channel angular pressing,” Phys. Met. Metallogr. 118, 272–278 (2017).

    Article  Google Scholar 

  6. H. Matsumoto, S. Watanabe, N. Masahashi, and S. Hanada, “Composition dependence of Young’s modulus in Ti–V, Ti–Nb, and Ti–V–Sn alloys,” Metall. Mater. Trans. A 37, 3239–3249 (2006).

    Article  Google Scholar 

  7. M. Bönisch, M. Calin, J. Humbeeck, W. Skrotzki, and J. Eckert, “Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti–Nb alloys,” Mater. Sci. Eng., C 48, 511–520 (2015).

    Article  Google Scholar 

  8. S. G. Fedotov and O. K. Belousov, “Elastic properties of alloys of titanium with molybdenum, vanadium, and niobium,” Sov. Ohys. Dokl. 8, 496–498 (1964).

    Google Scholar 

  9. S. G. Fedotov and O. K. Belousov, “Elastic properties of multi-component titanium alloys with molybdenum,vanadium and niobium,” Dokl. Akad. Nauk SSSR 155, 1387–1390 (1964).

    Google Scholar 

  10. C. M. Lee, C. F. Ju, and J. H. Chern Lin, “Structure–property relations of cast Ti–Nb alloys,” J. Oral Rehabil. 29, 314–322 (2002).

    Article  Google Scholar 

  11. H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito, “First-principles calculations for development of low elastic modulus Ti alloys,” Phys. Rev. B 70, 174113 (2004).

    Article  Google Scholar 

  12. J. Sun, Q. Yao, H. Xing, and W. Y. Guo, “Elastic properties of β, α” and ω metastable phases in Ti–Nb alloy from first-principles,” J. Phys.: Condens. Matter 19, 486215 (2007).

    Google Scholar 

  13. A. A. Popov, A. A. Il’in, A. G. Illarionov, O. A. Elkina, and M. Yu. Kollerov, “Study of phase transformations in quenched alloys of titanium–niobium system,” Fiz. Met. Metalloved. 78, 204–208 (1994).

    Google Scholar 

  14. A. G. Illarionov, A. A. Popov, S. V. Grib, and O. A. Elkina, “Special features of formation of omega-phase in titanium alloys due to hardening,” Metal. Sci. Heat Treat. 52, 493–498 (2010).

    Article  Google Scholar 

  15. D. L. Moffat and D. C. Larbalestier, “The competition between martensite and omega in quenched Ti–Nb alloys,” Metall. Trans. A 19,1677–1686 (1988).

    Article  Google Scholar 

  16. S. G. Fedotov, K. M. Konstantinov, R. G. Koknaev, and E. P. Sinodova, “Structure, properties and decomposition of martensite of titanium–niobium alloys,” in Titanium Alloys with Special Properties (Nauka, Moscow, 1982), pp. 29–33 [in Russian].

    Google Scholar 

  17. G. Aurelio, A. F. Guillermet, G. J. Cuello, and J. Campo, “Metastable phases in the Ti–V system: Part I. Neutron diffraction study and assessment of structural properties,” Metall. Mater. Trans. A 33, 1307–1317 (2002).

    Article  Google Scholar 

  18. R. Banerjee, P. C. Collins, D. Bhattacharyya, S. Banerjee, and H. Fraser, “Microstructural evolution in laser deposited compositionally graded α/β titanium–vanadium alloys,” Acta Mater. 51, 3277–3292 (2003).

    Article  Google Scholar 

  19. Y. Guo, K. Georgarakis, Y. Yokoyama, and A. R. Yavari, “On the mechanical properties of TiNb based alloys,” J. Alloys Compd. 571, 25–30 (2013).

    Article  Google Scholar 

  20. Y. Mantani and M. Tajima, “Effect of ageing on internal friction and elastic modulus of Ti–Nb alloys,” Mater. Sci. Eng., A 442, 409–413 (2006).

    Article  Google Scholar 

  21. S. Hanada, T. Ozaki, E. Takahashi, S. Watanabe, K. Yoshimi, and T. Abuyima, “Composition dependence of Young’s modulus in beta titanium binary alloys,” Mater. Sci. Forum 426–432, 3103–3108 (2003).

  22. G. T. Aleixo, C. R. M. Afonso, A. A. Coelho, and R. Caram, “Effects of omega phase on elastic modulus of Ti–Nb alloys as a function of composition and cooling rate,” Solid State Phenom. 138, 393–398 (2008).

    Article  Google Scholar 

  23. M. A. Shtremel’, Strength of Alloys. Ch. I. Defects of Lattice (Metallurgiya, Moscow, 1982) [in Russian].

  24. B. N. Arzamasov, V. I. Makarov, G. G. Mukhin, et al., Materials Science, Ed. by B. N. Arzamasov and G. G. Mukhin (Izd-vo MGTU im. N.E. Baumana, Moscow, 2001) [in Russian].

Download references

ACKNOWLEDGMENTS

The work was supported in part by the Russian Science Foundation (project no. 18-13-00220). The authors are grateful to the program of support for the leading universities of the Russian Federation to increase their competitiveness no. 211 of the Government of the Russian Federation and no. 02.A03.21.0006 for financing the acquisition of microindentation tester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Illarionov.

Additional information

Translated by O. Golosova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illarionov, A.G., Grib, S.V., Illarionova, S.M. et al. Relationship between Structure, Phase Composition, and Physicomechanical Properties of Quenched Ti–Nb Alloys. Phys. Metals Metallogr. 120, 150–156 (2019). https://doi.org/10.1134/S0031918X19020054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19020054

Keywords:

Navigation