Skip to main content
Log in

Composition dependence of young’s modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Young’s modulus of Ti-V and Ti-V-Sn alloys quenched from the β-phase region after solution treatment and cold rolling was investigated in relation to alloy compositions, microstructures, and constituent phases. The composition dependence of the Young’s modulus for quenched Ti-V binary alloys shows two minima of 69 GPa at Ti-10 mass pct V and 72 GPa at Ti-26 mass pct V. Between the two compositions, athermalω or stress-induced ω is introduced in retainedβ phase and increases Young’s modulus. That is, a low Young’s modulus is attained unless alloys undergoω transformation. In Ti-5 and -8 mass pct V, which under goα′ (hcp) martensitic transformation on quenching, the Young’s modulus further decreases by cold rolling, which can be reasonably explained by the formation ofα′ rolling texture. Comparing Young’s modulus in Ti-V binary alloy with that in Ti-Nb binary alloy, it is found that Young’s modulus is remarkably increased by athermal- or stress inducedω phase, and it shows a minimum when both martensitic andω transformation are suppressed during quenching in metastableβ alloys. The Sn addition to Ti-V binary alloy retards or suppresses athermal and stress-inducedω transformation, thereby decreasing Young’s modulus. Young’s modulus exhibits minimum values of 51 GPa in quenched (Ti-12 pct V)-2 pct Sn and of 57 GPa in cold-rolled (Ti-12 pct V)-6 pct Sn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Long and H.J. Rack:Biomaterials, 1998, vol. 19, pp. 1621–39.

    Article  CAS  Google Scholar 

  2. T. Ahmed, M. Long, J. Silvestri, C. Ruiz, and H. Rack:Titanium ’95: Science and Technology, Birmingham, United Kingdom, 1995, pp. 1760–67.

  3. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro:Mater. Sci. Eng., A, 1998, vol. A243, pp. 244–49.

    CAS  Google Scholar 

  4. M. Morinaga, M. Kato, T. Kamimura, M. Fukumoto, I. Harada, and K. Kubo:Titanium 1992, Science and Technology, San Diego, CA, 1992, pp. 276–83.

  5. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma:Science, 2003, vol. 300, pp. 464–67.

    Article  CAS  Google Scholar 

  6. H. Matsumoto, S. Watanabe, and S. Hanada:Mater. Trans., 2005, vol. 46, pp. 1070–78.

    Article  CAS  Google Scholar 

  7. S.G. Fedotov and P.K. Belousov:Phys. Met. Metallogr, 1964, vol. 17 (5), pp. 83–86.

    Google Scholar 

  8. E.W. Collings: inMaterial Properties Handbook, Titanium Alloys, R. Boyer, G. Welsch, and E.W. Collings, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 94–100.

    Google Scholar 

  9. T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada:Mater. Trans., 2004, vol. 45, pp. 2776–79.

    Article  CAS  Google Scholar 

  10. J.C. Williams, B.S. Hickman, and D.H. Leslie:Metall. Trans., 1971, vol. 2, pp. 477–84.

    CAS  Google Scholar 

  11. S. Hanada and O. Izumi:Metall. Trans. A, 1986, vol. 17A, pp. 1409–20.

    CAS  Google Scholar 

  12. T. Ozaki, H. Matsumoto, T. Miyazaki, M. Hasegawa, S. Watanabe, and S. Hanada:Proc. Materials and Processes for Medical Devices Conf., ASM INTERNATIONAL, Materials Park, OH, 2004, pp. 197–202.

    Google Scholar 

  13. T. Ahmed and H.J. Rack:J. Mater. Sci., 1996, vol. 31, pp. 4267–76.

    Article  CAS  Google Scholar 

  14. E.W. Collings: inMaterial Properties Handbook, Titanium Alloys, R. Boyer, G. Welsch, and E.W. Collings, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 5–11.

    Google Scholar 

  15. S. Nagashima:Tetsu-to-Hagané, 1986, vol. 72, pp. 142 (in Japanese).

    Google Scholar 

  16. E.S. Fisher and D.J. Renken:Phys. Rev., 1964, vol. 135 (2A), pp. 482–94.

    Article  CAS  Google Scholar 

  17. A.W. Bowen:Titanium’80 Science and Technology, 1980, pp. 947–53.

  18. T.S. Kuan, R.R. Ahrens, and S.L. Sass:Metall. Trans. A, 1975, vol. 6A, pp. 1767–74.

    CAS  Google Scholar 

  19. E.W. Collings:Phys. Rev. B, 1974, vol. 9, pp. 3989–99.

    Article  CAS  Google Scholar 

  20. T. Ahmed, M. Long, and H.J. Rack:Proc. Int. Workshop on β Titanium Alloys, Societe Francaise de Metallurgie et de Materiaux, Paris, 1994, pp. 109–16.

    Google Scholar 

  21. Y.L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y.L. Zhou, R. Yang, and A. Suzuki:Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3137–44.

    CAS  Google Scholar 

  22. W.F. Ho, C.P. Ju, and J.H.C. Lin:Biomaterials, 1999, vol. 20, p. 2115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, H., Watanabe, S., Masahashi, N. et al. Composition dependence of young’s modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys. Metall Mater Trans A 37, 3239–3249 (2006). https://doi.org/10.1007/BF02586159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586159

Keywords

Navigation