Skip to main content
Log in

Change in elastic properties of eutectic alloys under conditions of superplastic deformation

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, experimental data have been obtained which reveal taking place of complex physical processes under conditions of the structural superplasticity not only in the grain boundary, as it is commonly believed, but also in the grain body. It was established for the first time that superplastic deformation of the eutectic alloys is accompanied by significant changes in their Young’s moduli. It was demonstrated that under superplastic deformation the observed changes of the elastic properties of the eutectic Sn–38wt%Pb alloy under study are caused mainly by the decomposition of supersaturated solid solutions on the basis of the alloy components and the relaxation of internal stresses. It was also found that the viscous dislocation–diffusion non-conservative flow is actively developing in the eutectic alloys under conditions of superplasticity, in contrast to the existing ideas about grain boundary sliding as the main mechanism of the matter transport. The experimental results obtained are important for the deeper understanding of the physical nature of the structural superplasticity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kaibyshev OA (1992) Superplasticity of alloys, intermetallides and ceramics. Springer, Berlin

    Book  Google Scholar 

  2. Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Gilliano G (ed) (2011) Superplastic forming of advanced metallic materials: methods and application. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  4. Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010. https://doi.org/10.1007/s10853-009-3780-5

    Article  Google Scholar 

  5. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059. https://doi.org/10.1016/j.actamat.2013.08.018

    Article  Google Scholar 

  6. Kawasaki M, Foissey J, Langdon TG (2013) Development of hardness homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion. Mater Sci Eng A 561:118–125. https://doi.org/10.1016/j.msea.2012.10.096

    Article  Google Scholar 

  7. Ahmed MMI, Langdon TG (1983) Ductility of the superplastic Pb–Sn eutectic at room temperature. J Mater Sci Lett 2:59–62

    Article  Google Scholar 

  8. Ahmed MMI, Langdon TG (1983) The effect of grain size on ductility in the superplastic Pb–Sn eutectic. J Mater Sci Lett 2:337–340

    Article  Google Scholar 

  9. Cho TS, Lee HJ, Ahn B, Kawasaki M, Langdon TG (2014) Microstructural evolution and mechanical properties in a Zn–Al eutectoid alloy processed by high-pressure torsion. Acta Mater 72:67–79. https://doi.org/10.1016/j.actamat.2014.03.026

    Article  Google Scholar 

  10. Korshak VF, Arzhavitin VM, Rozumnii OS (1999) Young’s modulus change of the Pb–62% Sn superplastic alloy upon deformation. Vestn Khark Gos Univ Ser Phys 3:76–79 (in Russian)

    Google Scholar 

  11. Korshak VF, Arzhavitin VM, Samsonik AL, Mateichenko PV (2005) Metastability and structure-phase transformations in a tin–lead superplastic eutectic alloy. Izv Akad Nauk Ser Fiz 69:1543–1547

    Google Scholar 

  12. Korshak VF, Kryshtal’ AP, Mateychenko PV, Sirenko AF (2007) Strain-induced structural and phase transitions in superplastic eutectic. Bull Russ Acad Sci Phys 71:1680–1684. https://doi.org/10.3103/S1062873807120064

    Article  Google Scholar 

  13. Korshak VF, Shapovalov YuA, Pal’-Val’ PP, Mateichenko PV (2011) Changes in the structural phase state and elastic and inelastic properties of superplastic eutectic Sn–38% wt Pb alloy during the aging process. Bull Russ Acad Sci Phys 75:1345–1351. https://doi.org/10.3103/S1062873811100200

    Article  Google Scholar 

  14. Korshak VF, Shapovalov YuA, Mateychenko PV, Danilina IA (2008) Change of a structure-phase state and superplastic properties of tin-lead eutectics during aging process. Metallofiz Noveishie Tekhnol 30:385–396 (in Russian)

    Google Scholar 

  15. Korshak VF, Shapovalov YuA (2009) Some aspects of superplastic flow of eutectic alloys connected with metastability. Phys Met Metallogr 107:394–399. https://doi.org/10.1134/S0031918X09040103

    Article  Google Scholar 

  16. Presnyakov AA (1976) Superplasticity of metals and alloys. British Library Lending Division, Boston

    Google Scholar 

  17. Nikanorov SP, Kardashov BK (1985) Elasticity and dislocation anelasticity of crystals. Nauka, Moscow (in Russian)

    Google Scholar 

  18. Burenkov YuA, Nikanorov SP, Smirnov BI, Kopylov VI (2003) Recovery of Young’s modulus upon annealing of nanostructured niobium produced through severe plastic deformation. Phys Solid State 45:2119–2123. https://doi.org/10.1134/1.1626747

    Article  Google Scholar 

  19. Kardashev BK, Plaksin OA, Stepanov VA, Chernov VM (2004) Effect of proton and laser irradiation on the elastic and inelastic properties of a V–Ti–Cr alloy. Phys Solid State 46:1449–1455. https://doi.org/10.1134/1.1788777

    Article  Google Scholar 

  20. Betekhtin VI, Kadomtsev AG, Kardashev BK (2006) Elasticity and anelasticity of microcrystalline aluminum samples having various deformation and thermal histories. Phys Solid State 48:1506–1512. https://doi.org/10.1134/S1063783406080142

    Article  Google Scholar 

  21. Betekhtin VI, Sklenicka V, Saxl I, Kardashev BK, Kadomtsev AG, Narykova MV (2010) Influence of the number of passes under equal-channel angular pressing on the elastic-plastic properties, durability, and defect structure of the Al + 0.2 wt% Sc alloy. Phys Solid State 52:1629–1636. https://doi.org/10.1134/s1063783410080111

    Article  Google Scholar 

  22. Ahmadeev NH, Kovelev NP, Mulyukov RR, YaM Soifer, Valiev RZ (1993) The effect of heat treatment on the elastic and dissipative properties of copper with the submicrocrystalline structure. Acta Metall Mater 41:1041–1046. https://doi.org/10.1016/0956-7151(93)90153-J

    Article  Google Scholar 

  23. Lebedev AB, Pulnev SA, Kopylov VI, Burenkov YuA, Vetrov VV, Vylegzhanin OV (1996) Thermal stability of submicrocrystalline copper and Cu: ZrO2 composite. Scr Mater 35:1077–1081. https://doi.org/10.1016/1359-6462(96)00261-8

    Article  Google Scholar 

  24. Korshak VF, Shapovalov YuA, Vaselenko NN (2015) Structural and phase relaxation in superplastic eutectic alloy Sn–38% wt. Pb. Metallofiz Noveishie Tekhnol 37:1633–1642 (in Russian)

    Article  Google Scholar 

  25. Soliman MS (1994) Superplastic characteristics of the Pb-62%Sn eutectic alloy at room temperature. Scr Metall Mater 31:439–444. https://doi.org/10.1016/0956-716X(94)90015-9

    Article  Google Scholar 

  26. Natsik VD, Pal-Val PP, Smirnov SN (1998) Theory of a compound piezoelectric vibrator. Akust Zhurnal 44:640–647 (in Russian)

    Google Scholar 

  27. Bowman HA, Schoonover RM (1967) Procedure for high precision density determinations by hydrostatic weighing. J Res Natl Bur Stand C 71:179–198. https://doi.org/10.6028/jres.071C.017

    Google Scholar 

  28. Haynes WM (ed) (2014) CRC handbook of chemistry and physics, 95th edn. CRC Press, Boca Raton

    Google Scholar 

  29. Zhang NX, Chinh NQ, Kawasaki M, Huang Y, Langdon TG (2016) Self-annealing in a two-phase Pb–Sn alloy after processing by high-pressure torsion. Mater Sci Eng A 666:350–359. https://doi.org/10.1016/j.msea.2016.04.058

    Article  Google Scholar 

  30. Pal-Val LN, Pal-Val PP, Korshak VF, Mateychenko PV (2008) The effect of aging on the elastic and anelastic properties of a eutectic alloy Sn-38 wt%Pb. Condens Matter Interfaces 1:50–53 (in Russian)

    Google Scholar 

  31. Korshak VF, Kuznetsova RI, Zu CT (1990) Aftereffect in superplactically deformed alloy Pb-62%Sn. Fiz Met Metalloved 5:184–187 (in Russian)

    Google Scholar 

  32. Korshak VF, Shapovalov YuA, Samsonik AL, Mateichenko PV (2012) X-ray diffraction study of structural and phase states of a superplastic Sn-38 wt% Pb alloy and their variations under the effect of external mechanical stresses and aging. Phys Met Metallogr 113:190–199. https://doi.org/10.1134/S0031918X1202007X

    Article  Google Scholar 

  33. Korshak VF, Kryshtal’ AP, Shapovalov YuA, Samsonik AL (2010) Hydrodynamic flow of the eutectic under the conditions of superplasticity. Phys Met Metallogr 110:385–393. https://doi.org/10.1134/S0031918X10100091

    Article  Google Scholar 

  34. Broutman LJ (ed) (1974) Composite materials, vol 4. Academic Press, Cambridge

    Google Scholar 

  35. Yoshimura HN, Molisani AL, Narita NE, Cesar PF, Goldenstein H (2007) Porosity dependence of elastic constants in aluminum nitride ceramics. Mater Res 10:127–133. https://doi.org/10.1590/S1516-14392007000200006

    Article  Google Scholar 

  36. IgS Konovalenko, Smolin AYu, Korostelev SYu, Psakh’e SG (2009) Dependence of the macroscopic elastic properties of porous media on the parameters of a stochastic spatial pore distribution. Tech Phys 54:758–761. https://doi.org/10.1134/S1063784209050272

    Article  Google Scholar 

  37. Polyakov VV, Egorov AV, Turetskii VA (2004) Elastic moduli of porous pseudoalloy. News Altai State Univ 31:119–121 (in Russian)

    Google Scholar 

  38. Voight W (1928) Lehrbuch der Kristallphysik. Berlin, Teubner. https://doi.org/10.1007/978-3-663-15884-4 (in German)

    Google Scholar 

  39. Reuss A (1929) Berechnung der Fliebgrenze von Misehkristallen auf Grund der Plastizitätsbedingung für Einkrestalle. Z Angew Math Mech 9:49–58. https://doi.org/10.1002/zamm.19290090104 (in German)

    Article  Google Scholar 

  40. Apalkov VM, Boiko YuI, Slezov VV, Hoffmann MJ (2001) The elastic constants of porous medium. Sci Sinter 33:21–29

    Google Scholar 

  41. Valiev RZ, Alexandrov IV (2007) Bulk nanostructured metallic materials. IKTs “Akademkniga”, Moscow

    Google Scholar 

  42. Golovin SA, Pushkar A, Levin DM (1987) Elastic and damping properties of structural metallic materials. Metallurgiya, Moscow (in Russian)

  43. Poirier JP (1985) Creep of crystals. High temperature deformation processes in metals, ceramics and minerals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  44. Poirier JP (1982) On transformation plasticity. J Geophys Res 87:6791–6797. https://doi.org/10.1029/JB087iB08p06791

    Article  Google Scholar 

  45. Kawasaki M, Langdon TG (2015) Developing superplasticity in ultrafine-grained metals. Acta Phys Pol A 128:470–478. https://doi.org/10.12693/APhysPolA.128.470

    Article  Google Scholar 

  46. Langdon TG, Mohamed FA (1977) The activation energies for superplasticity. Scr Metall 11:575–579. https://doi.org/10.1016/0036-9748(77)90112-0

    Article  Google Scholar 

  47. Kawasaki M, Lee S, Langdon TG (2009) Constructing a deformation mechanism map for a superplastic Pb–Sn alloy processed by equal-channel angular pressing. Scr Mater 61:963–966. https://doi.org/10.1016/j.scriptamat.2009.08.001

    Article  Google Scholar 

  48. Mohamed FA, Langdon TG (1975) Creep behaviour in the superplastic Pb-62% Sn eutectic. Philos Mag 32:697–709. https://doi.org/10.1080/14786437508221614

    Article  Google Scholar 

  49. Pink E, Kutschej R, Stüwe HP (1981) Evidence for lattice-diffusion controlled superplasticity in a Sn–Pb–eutectic. Scr Metall 15:185–189. https://doi.org/10.1016/0036-9748(81)90326-4

    Article  Google Scholar 

  50. Ashby MF (1983) Mechanisms of deformation and fracture. Adv Appl Mech 23:117–177. https://doi.org/10.1016/S0065-2156(08)70243-6

    Article  Google Scholar 

  51. Gupta D, Vieregge K, Gust W (1999) Interface diffusion in eutectic Pb–Sn solder. Acta Mater 47:5–12. https://doi.org/10.1016/S1359-6454(98)00348-6

    Article  Google Scholar 

  52. Langdon TG (2006) Grain boundary sliding revisited: developments in sliding over four decades. J Mater Sci 41:597–609. https://doi.org/10.1007/s10853-006-6476-0

    Article  Google Scholar 

  53. Korshak VF, Shapovalov YuA, Prymak O, Kryshtal AP, Vasilenko RL (2015) Structural changes in Bi-43 wt% Sn eutectic alloy under superplastic deformation. Phys Met Metallogr 116:829–837. https://doi.org/10.1134/S0031918X15060034

    Article  Google Scholar 

  54. Pink E, Márquez A, Grinberg A (1981) A note on rate sensitivities of flow stresses of eutectic and eutectoid alloys. Scr Metall 15:191–194. https://doi.org/10.1016/0036-9748(81)90327-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to P.P. Pal-Val, Dr. Sci., the Head of the Department of B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, for the assistance in making acoustic experiments and useful consultations. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Shapovalov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshak, V.F., Shapovalov, Y.O. & Mateychenko, P.V. Change in elastic properties of eutectic alloys under conditions of superplastic deformation. J Mater Sci 53, 8590–8603 (2018). https://doi.org/10.1007/s10853-018-2163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2163-1

Keywords

Navigation