Skip to main content
Log in

Similarity of Hysteresis Quantities

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Based on the example of analyzing the Rayleigh equations for ascending and descending branches of the magnetic hysteresis loop, the dimensionless hysteresis quantities Br/Bmax, Wh/Wmax, Hc/Hmax, and BrHc/Wh, which have the same functional dependence on the external magnetic field Hmax, have been found. Hysteresis quantities proportional to the permeability μ or hysteresis loss Wh have been obtained. An analysis of the magnetically soft amorphous alloy Co66Fe3Cr3Si15B13 with very high initial permeability showed that the similarity of dimensionless hysteresis quantities takes place not only in the Rayleigh region, but also in a wider region of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. Bertotti, Hysteresis in Magnetism (Academic, Boston, 1998).

    Google Scholar 

  2. Lord Rayleigh, “The behavior of iron and steel under the operation of feeble magnetic forces,” Philos. Mag. 23, 225–245 (1887).

    Article  Google Scholar 

  3. L. Néel, Théorie des lois ďaimantation de Lord Rayleigh. 1óno partie: les déplacements ďun paroi isolée, Cah. Phys. 12, 1–20 (1942).

    Google Scholar 

  4. S. Zapperi, A. Magni, and G. Durin, “Microscopic foundations of the Rayleigh law of hysteresis,” J. Magn. Magn. Mater. 242–245, 987–992 (2002).

    Article  Google Scholar 

  5. S. Chikazumi, Physics of Ferromagnetism (New York, Oxford University Press, 1997).

    Google Scholar 

  6. C. Borderon, R. Renoud, M. Ragheb, and H. W. Gundel, “Description of the low field nonlinear dielectric properties of ferroelectric and multiferroic materials,” Appl. Phys. Lett. 98, 112903 (2011).

    Article  Google Scholar 

  7. Z. Luo, X. Lou, F. Zhang, Y. Liu, D. Chang, C. Liu, Q. Liu, B. Dkhil, M. Zhang, X. Ren, and H. He, “Rayleigh-like nonlinear dielectric response and its evolution during electrical fatigue in antiferroelectric (Pb, La)(Zr, Ti)O3 thin film,” Appl. Phys. Lett. 104, 142904 (2014).

    Article  Google Scholar 

  8. R. E. Eitel, T. R. Shrout, and C. A. Randall, “Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics,” J. Appl. Phys. 99, 124110 (2006).

    Article  Google Scholar 

  9. O. Boser, “Internal friction due to hysteretic dislocation motion in solid solution crystals,” J. Appl. Phys. 54, 2338–2343 (1983).

    Article  Google Scholar 

  10. C. Steinmetz, “On the relationship between magnetic losses and domain structure law of hysteresis,” Proc. IEEE 72, 197–221 (1989), preprinted from the Amer. Inst. Electr. Eng. Trans., 1892, Vol. 9, pp. 3–64.

    Google Scholar 

  11. S. Kobayashi, T. Fujiwara, S. Takahashi, H. Kikuchi, Y. Kamada, K. Ara, and T. Shishido, “The effect of temperature on laws of hysteresis loops in nickel single crystals with compressive deformation,” Philos. Mag. 89, 651–664 (2009).

    Article  Google Scholar 

  12. S. Kobayashi, S. Takahashi, T. Shishido, Y. Kamada, and H. Kikuchi, “Low-field magnetic characterization of ferromagnets using a minor-loop scaling law,” J. Appl. Phys. 107, 023908 (2010).

    Article  Google Scholar 

  13. Yu. N. Starodubtsev and V. A. Kataev, “On the connection between magnetic losses and the behavior of the domain structure in single crystals of silicon iron,” Fiz. Met. Metalloved. 64, 1076–1083 (1987).

    Google Scholar 

  14. Y.-L. He and G. C. Wang, “Observation of dynamic scaling of magnetic hysteresis in ultrathin ferromagnetic Fe/Au (001) films,” Phys. Rev. Lett. 70, 2336–2339 (1993).

    Article  Google Scholar 

  15. V. S. Tsepelev, Yu. N. Starodubtsev, and N. Tsepeleva, “Hysteresis properties of the amorphous high permeability Co66Fe3Cr3Si15B13 alloy,” AIP Adv. 8, 047707 (2018).

    Article  Google Scholar 

  16. V. Tsepelev, Yu. Starodubtsev, V. Zelenin, V. Belozerov, and V. Konashkov, “Temperature affecting the magnetic properties of the Co79 – xFe3Cr3Si15Bx amorphous alloy,” J. Alloys Compd. 643, S280–S282 (2015).

    Article  Google Scholar 

  17. M. Kersten, “Die Wölbung der Blochwand als Elementarvorgang reversibler Magnetisierungsänderungen (Anfangspermeabilität und ΔE-Effekt),“ Z. Angew. Phys. 8, 313–322 (1956).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Program of Scientific Research in Higher Education Institutions of the Russian Federation, state task no. 4.9541.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Tsepelev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubtsev, Y.N., Tsepelev, V.S. Similarity of Hysteresis Quantities. Phys. Metals Metallogr. 119, 728–734 (2018). https://doi.org/10.1134/S0031918X18080136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18080136

Keywords:

Navigation