Skip to main content
Log in

The Use of the Embedded-Atom Method in Statistical Thermodynamics of Metals

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

An expression for the Helmholtz energy of a metal has been derived using the embedded-atom method (EAM) within the classical perturbation theory. An expression for the effective three-particle distribution function with effective three-particle interactions taken into account within classical statistical thermodynamics has been proposed. Temperature dependences of the atomic density and the internal energy have been calculated for copper and gold. These dependences have been used to analyze the effective EAM-derived potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J.-P. Hansen and A. R. McDonald, Theory of Simple Liquids. With Applications to Soft Matter (Academic, London, 2013).

    Google Scholar 

  2. J. R. Solana, Perturbation Theories for the Thermodynamic Properties of Fluids and Solids (CRC Press, Taylor & Francis Group, Boca aton, Fl, 2013).

  3. C. Rascon, L. Mederos, and G. Navascues, “Theoretical approach to the correlations of a classical crystal”, Phys. Rev. E. 54, 1261–1264 (1996).

    Article  Google Scholar 

  4. H. S. Kang, T. Ree, and F. H. Ree, “A perturbation theory of classical solids,” J. Chem. Phys. 84, 4547–4557 (1986).

    Article  Google Scholar 

  5. I. P. Bazarov and E. V. Gevorkyan, Statistical Theory of Solid and Liquid Crystals (MGU, Moscow, 1983) [in Russian].

    Google Scholar 

  6. Yu. V. Agrafonov and G. A. Martynov, “Statistical theory of crystal state,” Teor. Mat. Fiz. 90, 113–127 (1992).

    Article  Google Scholar 

  7. V. N. Bondarev, “Statistical theory of noble-gas crystals and the phenomenon of sublimation,” Phys. Rev. E 71, 051102 (2005).

    Article  Google Scholar 

  8. M. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2003).

    Book  Google Scholar 

  9. I. G. Kaplan, Intermolecular Interactions. Physical Interpretation, Computer Calculations, and Model Potentials (Binom. Laboratoriya znanii, Moscow, 2012) [in Russian].

  10. Annual Reviews of Computational Physics IX, Ed. by Dietrich Stauffer (World Scientific, Singapore, 2001).

    Google Scholar 

  11. M. Manninen, “Interatomic interactions in solids: An effective-medium approach,” Phys. Rev. B. 34, 8486–8495 (1986).

    Article  Google Scholar 

  12. S. M. Foiles, “Application of the embedded-atom method to liquid transition metals,” Phys. Rev. B. 32, 3409–3415 (1985).

    Article  Google Scholar 

  13. V. B. Warshavsky and X. Song, “Phase diagrams of binary alloys calculated from a density functional theory,” Phys. Rev. B. 79, 014101 (2009).

    Article  Google Scholar 

  14. M. S. Daw, S. M. Foiles, and M. I. Baskes, “The embedded-atom method: A review of theory and applications,” Mater. Sci. Rep. 9, 251–310 (1993).

    Article  Google Scholar 

  15. J. H. Li, X. D. Dai, S. H. Liang, K. P. Tai, Y. Kong, and B. X. Liu, “Interatomic potentials of the binary transition metal systems and some applications in materials physics,” Phys. Rep. 455, 1–134 (2008).

    Article  Google Scholar 

  16. A. R. Denton, G. Kahl, and J. Hafner, “Freezing of simple liquid metals,” J. Non-Cryst. Solids 250252, 15–19 (1999).

    Article  Google Scholar 

  17. X. D. Dai, Y. Kong, J. H. Li, and B. X. Liu, “Extended Finnis–Sinclair potential for bcc and fcc metals and alloys,” J. Phys.: Condens. Matter. 18, 4527–4542 (2006).

    Google Scholar 

  18. G. D. Barrera, R. H. de Tendler, and E. Isoardi, “Structure and energetics of Cu–Au alloys,” Modell. Simul. Mater. Sci. Eng. 8, 389–401 (2000).

    Article  Google Scholar 

  19. J. Cai and Y. Y. Ye, “Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys,” Phys. Rev. B. 54, 8398–8410 (1996).

    Article  Google Scholar 

  20. V. E. Zalizniak and O. A. Zolotov, “Towards a Universal Embedded Atom Method Interatomic Potential for Pure Metals,” J. Siber. Fed. Univ., Math. Phys. 8, 230–249 (2015).

    Google Scholar 

  21. E. Velasco, L. Mederos, and G. Navascués, “Phase diagram of colloidal systems,” Langmuir 14, 5652–5655 (1998).

    Article  Google Scholar 

  22. J. S. McCarley and N. W. Ashcroft, “Correlation functions in classical solids,” Phys. Rev. E. 55, 4990–5003 (1997).

    Article  Google Scholar 

  23. J. Mei, “Analytic embedded-atom potentials for fcc metals: Application to liquid and solid copper,” Phys. Rev. B. 43, 4653–4658 (1991).

    Article  Google Scholar 

  24. B. D. Todd and R. M. Lynden-Bell, “Surface and bulk properties of metals modelled with Sutton–Chen potentials,” Surf. Sci. 281, 191–206 (1993).

    Article  Google Scholar 

  25. B-J. Lee, J.-H. Shim, and M. I. Baskes, “Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method,” Phys. Rev. B. 68, 144112 (2003).

    Article  Google Scholar 

  26. H.-S. Jin, J.-D. An, and Y.-S. Jong, “EAM potentials for BCC, FCC and HCP metals with farther neighbor atoms,” Appl. Phys. A 120, 189–197 (2015).

    Article  Google Scholar 

  27. A. A. Louis, “Beware of density dependent pair potentials,” J. Phys.: Condens. Matter. 14, 9187–9206 (2002).

    Google Scholar 

  28. S. L. Singh and Y. Singh, “Crystallization of fluids: Free-energy functional for symmetry breaking first-order freezing transition,” Europhys. Lett. 88, 16005-p1–16005-p6 (2009).

  29. A. M. Sarry and M. F. Sarry, “On multiparticle interaction”, Tech. Phys. 59, 474–481 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zubkov.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubkov, V.V., Isoyan, A.L. & Zubkova, A.V. The Use of the Embedded-Atom Method in Statistical Thermodynamics of Metals. Phys. Metals Metallogr. 119, 613–621 (2018). https://doi.org/10.1134/S0031918X1807013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1807013X

Keywords:

Navigation