Skip to main content
Log in

Nitrogen alloying of the 12% Cr martensitic-ferritic steel

  • Strength and Plasticity
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The influence of the nitrogen content on the structure and mechanical properties of heat and corrosion resistant 12% Cr martensitic-ferritic steel developed at the Central Research Institute of Structural Materials Prometey has been studied. Steel containing 0.061 wt % nitrogen possesses a high level of mechanical properties. The decrease in the nitrogen content to 0.017 wt % leads to an increase of structurally free ferrite fraction in the steel, a decrease in the density of dislocations, a decrease of structural dispersity and the absence of finely dispersed precipitates of niobium and vanadium nitrides and carbides. As a result, there is a decrease in the strength properties, especially in the heat resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yvon and F. Carré, “Structural materials challenges for advanced reactor systems,” J. Nucl. Mater. 385, 217–222 (2009).

    Article  Google Scholar 

  2. D. A. Artemieva, G. P. Karzov, A. S. Kudryavtsev, V. G. Markov, S. A. Suvorov, S. I. Brykov, V. V. Denisov, S. Yu. Korolev, and M. S. Metal’nikov, “Selection of a structural material for steam generators using criteria of corrosion resistance under different operating condi-tions of a high-power sodium reactor,” Vopr. At. Nauki Tekh., Ser.: Obespechenie Bezop. AES, No. 34, 53–59 (2014).

    Google Scholar 

  3. R. L. Klueh and A. T. Nelson, “Ferritic/martensitic steels for next-generation reactors,” J. Nucl. Mater. 371, 37–52 (2007).

    Article  Google Scholar 

  4. J. Hald, “Microstructure and long-term creep properties of 9–12% Cr steels,” Int. J. Pressure Vessels Piping 85, 30–37 (2008).

    Article  Google Scholar 

  5. F. Abe, M. Taneike, and K. Sawada, “Alloy design of creep resistant 9Cr steel using a dispersion of nanosized carbonitrides,” Int. J. Pressure Vessels Piping 84, 3–12 (2007).

    Article  Google Scholar 

  6. A. E. Fedoseeva, V. A. Dudko, R. O. Kaibyshev, P. A. Kozlov, V. N. Skorobogatykh, and I. A. Shchenkova, “Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C,” Phys. Met. Metallogr. 116, 1047–1056 (2015).

    Article  Google Scholar 

  7. J. Hald, “Prospects for martensitic 12% Cr steels for advanced steam power plants,” Trans. Indian Inst. Met. 69, 183–188 (2016).

    Article  Google Scholar 

  8. H. K. Danielsen, P. E. di Nunzio, and J. Hald, “Kinetics of Z-phase precipitation in 9 to 12% Cr steels,” Metall. Mater. Trans. A 44, 2445–2452 (2013).

    Article  Google Scholar 

  9. V. A. Dudko, A. E. Fedoseeva, A. N. Belyakov, and R. O. Kaibyshev, “Influence of the carbon content on the phase composition and mechanical properties of P92-type steel,” Phys. Met. Metallogr. 116, 1165–1174 (2015).

    Article  Google Scholar 

  10. A. S. Kudriavtsev, D. A. Artemieva, and P. Ya. Rayner, “Effect of phase composition on the deformation capacity of 12Cr martensitic steel at high temperatures,” Inorg. Mater.: Appl. Res. 6, 566–570 (2015).

    Article  Google Scholar 

  11. M. I. Gol’dshtein, S. V. Grachev, and Yu. G. Veksler, Special Steels (Moscow Inst. Steel and Alloys Moscow, 1999) [in Russian].

    Google Scholar 

  12. K. A. Lanskaya, High-Chromium Heat-Resistant Steels (Metallirgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  13. R. O. Kaybyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New martensitic steels for fossil power plant: creep resistance,” Phys. Met. Metallogr. 109, 186–200 (2010).

    Article  Google Scholar 

  14. M. Yoshizawa and M. Igarashi, “Long-term creep deformation characteristics of advanced ferritic steels for USC power plants,” Int. J. Pressure Vessels Piping 84, 37–43 (2007).

    Article  Google Scholar 

  15. A. S. Kudryavtsev, K. A. Okhapkin, M. S. Mikhailov, C. S. Skutin, G. E. Zubova, and B. V. Fedotov, “Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints,” Phys. Met. Metallogr. 117, 602–610 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kudryavtsev.

Additional information

Original Russian Text © A.S. Kudryavtsev, D.A. Artem’eva, M.S. Mikhailov, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 8, pp. 829–835.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtsev, A.S., Artem’eva, D.A. & Mikhailov, M.S. Nitrogen alloying of the 12% Cr martensitic-ferritic steel. Phys. Metals Metallogr. 118, 788–794 (2017). https://doi.org/10.1134/S0031918X17080087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17080087

Keywords

Navigation