Skip to main content
Log in

Prospects for Martensitic 12 % Cr Steels for Advanced Steam Power Plants

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Creep strength improvements of martensitic 9 % Cr steels have been obtained by controlled additions of V, Nb, N and B to the steels, which resulted in precipitation hardening by fine stable nitrides based on V and Nb as well as in stabilization of Cr carbides against coarsening. The best steels P92 and FB2 are now used in power plants up to 600–620 °C steam temperature. For higher steam temperatures up to 650 °C steels with 11–12 % Cr are needed for better resistance against steam oxidation. However, fine V and Nb based nitrides may transform to coarse Z-phase [Cr(V,Nb)N] nitrides in steels with such Cr contents, leading to a strength loss in long-term creep. The paper presents the status of development of new stable 12 Cr steels based on the concepts of either strengthening by fine Z-phase nitrides or on elimination of nitrides from the steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Bank http://data.worldbank.org/ (2015).

  2. BP Energy outlook 2030 http://www.bp.com/ (2015).

  3. Hald J, in Proc 9th Liège Conf Materials for Advanced Power Engineering 2010 (eds) Lecompte-Beckers J, Carton M, Schubert F, and Ennis P J, Forschungszentrum Jülich (2010) p 55.

  4. Hald J, Int J Press Vessels Piping 85 (2008) 30.

    Article  Google Scholar 

  5. Hald J, and Korcakova L, ISIJ Int 43 (2003) 420.

    Article  Google Scholar 

  6. Abe F, Int J Mater Res 99 (2008) 387.

    Article  Google Scholar 

  7. Hättestrand M, and Andrén H-O, Mater Sci Eng A 270 (1999) 33.

    Article  Google Scholar 

  8. Fujita T, Metall Trans A 12 (1981) 1071.

    Article  Google Scholar 

  9. Schnabel E, Schwaab P, and Weber H, Stahl und Eisen 107 (1987) 691.

    Google Scholar 

  10. Strang A, and Vodarek V, Mater Sci Tech 12 (1996) 552.

    Article  Google Scholar 

  11. Danielsen H K, and Hald J, Energy Mater 1 (2006) 49.

    Article  Google Scholar 

  12. Sawada K, Kushima H, Kimura K, and Tabuchi M, ISIJ Int 47 (2007) 733.

    Article  Google Scholar 

  13. Danielsen H K, and Hald J, Comput Coupling Phase Diagr Thermochem, 31 (2007) 505.

    Article  Google Scholar 

  14. Fujita T, and Takahashi N, Trans ISIJ 18 (1978) 702.

    Google Scholar 

  15. Sakuraya K, Odaka H, and Abe F, in Proc 4th Int Conf Advances in Materials Technology for Fossil Power Plants, (ed) Viswanathan R, Gandy D, and Coleman K, ASM International (2005) p 1270.

  16. Semba H, and Abe F, Energy Mater 1 (2006) 238.

    Article  Google Scholar 

  17. Tabuchi M, Hongo H, and Abe F, in 10th Liège Conf Materials for advanced Power Engineering 2014, (ed) Lecompte-Beckers J, Contrepois Q, Carton M, Schubert F, and Ennis P J, Forschungszentrum Jülich (2012) p 101.

  18. Mayr P, Holzer I, Albu M, Kothleitner G, Cerjak H, and Allen S M, in Proc. 6th Int Conf Advances in Materials Technology for Fossil Power Plants 2010, (ed) Gandy D, Viswanathan R, and Coleman K, ASM International (2011) p 640.

  19. Schlacher C, Béal C, Sommitsch C, Baumgartner S, and Mayr P, in Proc. 3rd Int ECCC Conf Creep and Fracture 2014, Paper #11, Rome (2014).

  20. Mayr P, Méndez Martin F, Albu M, and Cerjak H, Mater High Temp 27 (2010) 67.

    Article  Google Scholar 

  21. Asakura K, Koseki T, Sato T, Arai M, Horiuchi T, Tamura K, and Fujita T, ISIJ Int 52 (2012) 902.

    Article  Google Scholar 

  22. Strang A, and Vodarek V, in Microstructural development and stability in high Chromium ferritic power plant steels (ed) Strang A, and Gooch D J, The Institute of materials, London (1997) p 31.

  23. Helis L, Toda Y, Hara T, Miyazaki H, and Abe F, in 34th MPA Seminar, Stuttgart, Germany (2008) p 9.1.

  24. Kaufmann F, Zies G, Maile K, Straub S, and Mayer K H, 34th MPA Seminar, Stuttgart, Germany (2008) p 4.1.

  25. Danielsen H K, and Hald J, Mater Sci Eng A 505 (2009) 169.

    Article  Google Scholar 

  26. Cipolla L, Danielsen H K, Venditti D, Di Nunzio P E, Hald J, and Somers M A J, Acta Mater 58 (2010) 669.

    Article  Google Scholar 

  27. Danielsen H K, Hald J, and Somers M A J, Scr Mater 66 (2012) 261.

    Article  Google Scholar 

  28. Danielsen H K, and Hald J, VGB powerTech 89 (2009) 68.

    Google Scholar 

  29. European Union FP7 Project Z-Ultra (GA Nr. 309916) (2013).

  30. Danielsen H K, and Hald J, Scr Mater 60 (2009) 811.

    Article  Google Scholar 

  31. Dudova N, and Kaibyshev R, ISIJ Int 51 (2011) 826.

    Article  Google Scholar 

  32. Dudova N, Mishnev R, Kaibyshev R, ISIJ Int 51 (2011) 1912.

    Google Scholar 

  33. Mishnev R, Dudova N, and Kaibyshev R, in Proc 3rd Int ECCC Conf Creep and Fracture 2014, Paper #66, Rome (2014).

  34. Tsuda Y, Yamada M, Ishi R, Wanatabe O, Miyazaki M, in 6th Liége Conf Materials for Advanced Power Engineering 1998 (ed) Lecompte-Beckers J, and Schubert F, Julich (1998) p 331.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hald, J. Prospects for Martensitic 12 % Cr Steels for Advanced Steam Power Plants. Trans Indian Inst Met 69, 183–188 (2016). https://doi.org/10.1007/s12666-015-0793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0793-4

Keywords

Navigation