Skip to main content
Log in

Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x (x = 0.25, 0.5, 0.75, 1)

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

High-entropy alloys CoCrFeNiMnVKharkov Institute of Physics and Technology, ul. Akademicheskaya 1, Kharkov 61108 (Kharkov Institute of Physics and Technology, ul. Akademicheskaya 1, Kharkov 61108 = 0.25, 0.5, 0.75, 1) were prepared by vacuum arc melting. The structure and microhardness of the alloys have been studied in the cast state and after annealing at temperatures of 700–1100°C. It has been found that the alloys consist of the fcc (γ) solid solution and intermetallic sigma (σ) phase. The volume fraction of the σ phase increases with increasing vanadium content. As a result of annealing, phase transformations occur, including the precipitation of σ particles from the γ phase and, vice versa, the precipitation of γ particles from the σ phase. It has been shown that the change in the volume fraction of the σ phase upon annealing occurs due to the changes in the total content of σ-forming elements, chromium and vanadium, in accordance with the lever rule. With increasing temperature, the volume fraction of the σ phase varies nonmonotonically; first, it increases, then it decreases. The microhardness of the alloys correlates well with the change in the volume fraction of the σ phase. The mechanisms of the phase transformations and quantitative relationships between chemical and phase compositions of the alloys and their hardness are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, Ts.-Sh. Chin, T.-Ts. Shun, Ch.-H. Tsau, and Sh.-Y. Chang, “Nanostructured high-entropy alloys with multiple principle elements: Novel alloy design concepts and outcomes,” Advan. Eng. Mater. 6, 299–303 (2004).

    Article  Google Scholar 

  2. O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodwart, “Accelerated exploration of multiprincipal element alloys with solid solution phases,” Nature Commun. 6, 6529–6529 (2015).

    Article  Google Scholar 

  3. Y. P. Wang, B. Sh. Li, and Zh. F. Heng, “Solid solution or intermetallics in a high-entropy alloy,” Advan. Eng. Mater. 11, 641–644 (2009).

    Article  Google Scholar 

  4. S. Singh, N. Wanderka, B. S. Murty, U. Glatzel, and J. Banhart, “Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy,” Acta Mater. 59, 182–190 (2011).

    Article  Google Scholar 

  5. M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, N. I. Kourov, and N. Wanderka, “Specific features of cast high-entropy AlCrFeCoNiCu alloys produced by ultrarapid quenching from the melt,” Phys. Met. Metallogr. 114, 503–513 (2013).

    Article  Google Scholar 

  6. M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of highentropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114, 514–520 (2013).

    Article  Google Scholar 

  7. M.-H. Tsai, K.-Y. Tsai, C.-W. Tsai, C. Lee, C.-C. Juan, and J.-W. Yeh, “Criterion for sigma phase formation in Cr-and V-containing high-entropy alloys,” Mater. Res. Lett. 1, 207–212 (2013).

    Article  Google Scholar 

  8. S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun, and J.-W. Yeh, “Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys,” Mater. Sci. Eng., A. 527, 5818–5825 (2010).

    Article  Google Scholar 

  9. G. A. Salishchev, M. A. Tikhonovsky, D. G. Shaysultanov, N. D. Stepanov, A. V. Kuznetsov, I. V. Kolodiy, A. S. Tortika, and O. N. Senkov, “Effect of Mn and V on structure and mechanical properties of high entropy alloys based on FeCrCoNi system,” J. Alloys Compd. 591, 11–21 (2014).

    Article  Google Scholar 

  10. N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, and O. N. Senkov, “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015).

    Article  Google Scholar 

  11. M.-R. Chen, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and M.-H. Chuang, “Effect of vanadium addition on the microstructure, hardness and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy,” Metall. Mater. Trans., A 37, 1363–1369 (2006).

    Article  Google Scholar 

  12. D. G. Shaysultanov, N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, and O. N. Senkov, “Phase composition and superplastic behavior of a wrought AlCrCuNiFeCo high-entropy alloy,” JOM 65, 1815–1828 (2013).

    Article  Google Scholar 

  13. E. O. Hall and S. H. Algie, “The sigma phase,” Int. Mater. Rev. 11, 161–88 (1966).

    Article  Google Scholar 

  14. F. F. Khimushin, Stainless Steels (Metallurgizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  15. L. C. Tsao, C. S. Chen, and C. P. Chu, “Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy,” Mater. Design. 36, 854–858 (2012).

    Article  Google Scholar 

  16. M.-Y. Tsai, H. Yuan, G. Cheng, W. Xu, W. W. Jian, M.-H. Chuang, C.-C. Juan, A.-C. Yeh, S.J. Lin, and Y. Zhu, “Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy,” Intermetallics 33, 81–86 (2013).

    Article  Google Scholar 

  17. B. Schuh, F. Mendez-Martin, B. Völker, E. P. George, H. Clemens, R. Pippan, and A. Hohenwarter, “Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi highentropy alloy after severe plastic deformation,” Acta Mater. 96, 258–268 (2015).

    Article  Google Scholar 

  18. E. J. Pickering, R. Muñoz-Moreno, H. J. Stone, and N. G. Jones, “Precipitation in the equiatomic highentropy alloy CrMnFeCoNi,” Scr. Mater. 113, 106–109 (2016).

    Article  Google Scholar 

  19. N. D. Stepanov, D. G. Shaysultanov, M. S. Ozerov, S. V. Zherebtsov, and G. A. Salishchev, “Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing,” Mater. Lett. 185, 1–4 (2016).

    Article  Google Scholar 

  20. C.-C. Hsieh and W. Wu, “Overview of intermetallic sigma (s) phase precipitation in stainless steels,” ISRN Metall. 2012, Article ID 732471. (2012)

    Google Scholar 

  21. A. A. Popov, A. S. Bannikova, and S. V. Belikov, “Precipitation of the sigma phase in high-alloy austenitic chromium–nickel–molybdenum alloys,” Phys. Met. Metallogr. 108, 586–592 (2009).

    Article  Google Scholar 

  22. A. A. Baranov, Phase Transformation and Thermal Cycling of Metals (Kiev, Naukova Dumka, 1974) [in Russian].

    Google Scholar 

  23. K. Y. Tsai, M. H. Tsai, and J.-W. Yeh, “Sluggish diffusion in CoCrFeMnNi high entropy alloys,” Acta Mater. 61, 4887–4897 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Shaysultanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaysultanov, D.G., Stepanov, N.D., Salishchev, G.A. et al. Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x (x = 0.25, 0.5, 0.75, 1). Phys. Metals Metallogr. 118, 579–590 (2017). https://doi.org/10.1134/S0031918X17060084

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17060084

Keywords

Navigation