Skip to main content
Log in

Evolution of the structural and magnetotransport properties of magnetite films depending on the temperature of their synthesis on the SiO2/Si(001) surface

  • Electrical and Magnetic Properties
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The methods of transmission and reflection electron diffraction have been used to investigate the structure of Fe3O4 films depending on the temperature of their synthesis on an Si substrate coated with an ultrathin layer of SiO2. The thus-grown polycrystalline films of magnetite had a texture, the axis of which was perpendicular to the surface of the SiO2 film. It has been revealed that, with an increase in the growth temperature, a structural rearrangement occurs which is characterized by an increase in the volume fraction of grains with the preferred (311) orientation. A study of the magnetotransport properties of the films has shown that the magnitude of their magnetoresistance increases with an increase in the temperature of their synthesis. It has been established that in the Fe3O4/SiO2/Si system with a tunneling-thin layer of SiO2 the magnetoresistance decreases as a result of the flow of an electric current through the silicon substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhang and S. Satpathy, “Electron states, magnetism, and the Verwey transition in magnetite”, Phys. Rev. B: Condens. Matter 44, 13319–13331 (1991).

    Article  Google Scholar 

  2. I. Zutic, J. Fabian, and S. das Sarma, “Spintronics: Fundamentals and applications”, Rev. Modern Phys. 76, 323–332 (2004).

    Article  Google Scholar 

  3. T. Suzuki, T. Sasaki, T. Oikawa, M. Shirashi, Y. Suzuki, and K. Noguchi, “Room-temperature electron spin transport in a highly doped Si channel”, Appl. Phys. Express 4, 023003 (2011).

    Article  Google Scholar 

  4. T. Fujii, M. Takano, R. Katano, Y. Bando, and Y. Isozumi, “Preparation and characterization of (111)-oriented Fe3O4 films deposited on sapphire”, J. Appl. Phys. 66, 3168–3172 (1989).

    Article  Google Scholar 

  5. A. V. Ramos, J.-B. Moussy, M.-J. Guittet, A. M. Bataille, M. Gautier-Soyer, M. Viret, C. Gatel, P. Bayle-Guillemaud, and E. Snoeck, “Magnetotransport properties of Fe3O4 epitaxial thin films: Thickness effects driven by antiphase boundaries”, J. Appl. Phys. 100, 103902 (2006).

    Article  Google Scholar 

  6. Y. X. Lu, J. S. Claydon, Y. B. Xu, S. M. Thompson, K. Wilson, and G. van der Laan, “Epitaxial growth and magnetic properties of half-metallic Fe3O4 on GaAs(100)”, Phys. Rev. B: Condens. Matter Mater. Phys. 70, 233304 (2004).

    Article  Google Scholar 

  7. T. Kado, “Structural and magnetic properties of magnetite-containing epitaxial iron oxide films grown on MgO(001) substrates”, J. Appl. Phys. 103, 043902 (2008).

    Article  Google Scholar 

  8. S. Tiwari, R. Prakash, R. J. Choudhary, and D. M. Phase, “Oriented growth of Fe3O4 thin film on crystalline and amorphous substrates by pulsed laser deposition”, J. Phys. D: Appl. Phys. 40, 4943–4947 (2007).

    Article  Google Scholar 

  9. R. J. Kennedy and P. A. Stamp, “Fe3O4 films grown by laser ablation on Si(100) and GaAs(100) substrates with and without MgO buffer layers”, J. Phys. D: Appl. Phys. 32, 16–21 (1999).

    Article  Google Scholar 

  10. M. L. Parames, J. Mariano, Z. Viskadourakis, N. Popovici, M. S. Rogalski, J. Giapintzakis, and O. Conde, “PLD of Fe3O4 films: Influence of background gas on surface morphology and magnetic properties”, Appl. Surf. Sci. 252, 4610–4614 (2006).

    Article  Google Scholar 

  11. Y. K. Kim and M. Oliveria, “Magnetic properties of reactively sputtered Fe1–xO and Fe3O4 thin films”, J. Appl. Phys. 75, 431–437 (1994).

    Article  Google Scholar 

  12. W. B. Mi, H. Liu, Z. Q. Li, P. Wu, E. Y. Jiang, and H. L. Bai, “Evolution of structure, magnetic and transport properties of sputtered films from Fe to Fe3O4”, J. Phys. D: Appl. Phys. 39, 5109–5115 (2006).

    Article  Google Scholar 

  13. C. Park, Y. Peng, J.-G. Zhu, D. E. Laughlin, and R. M. White, “Magnetoresistance of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature”, J. Appl. Phys. 97, 10C303 (2005).

    Article  Google Scholar 

  14. J. Tang, K.-Y. Wang, and W. Zhou, “Magnetic properties of nanocrystalline Fe3O4 films”, J. Appl. Phys. 89, 7690–7692 (2001).

    Article  Google Scholar 

  15. S. Tiwari, R. J. Choudhary, R. Prakash, and D. M. Phase, “Growth and properties of pulsed laser deposited thin films of Fe3O4 on Si substrates of different orientation”, J. Phys.: Condens. Matter 19, 176002 (2007).

    Google Scholar 

  16. C. Boothman, A. M. Sanchez, and S. van Dijken, “Structural, magnetic, and transport properties of Fe3O4/Si(111) and Fe3O4/Si(001)”, J. Appl. Phys. 101, 123903 (2007).

    Article  Google Scholar 

  17. G. Zhang, C. Fan, L. Pan, F. Wang, P. Wu, H. Qiu, Y. Gu, and Y. Zhang, “Magnetic and transport properties of magnetite thin films”, J. Magn. Magn. Mater. 293, 737–745 (2005).

    Article  Google Scholar 

  18. S. Jain, A. O. Adeyeye, and C. B. Boothroyd, “Electronic properties of half-metallic Fe3O4 films”, J. Appl. Phys. 97, 093713 (2005).

    Article  Google Scholar 

  19. X. Huang and J. Ding, “The structure, magnetic and transport properties of Fe3O4 thin films on different substrates by pulsed laser deposition”, J. Korean Phys. Soc. 62, 2228–2232 (2013).

    Article  Google Scholar 

  20. V. V. Balashev, V. A. Vikulov, T. A. Pisarenko, and V. V. Korobtsov, “Effect of oxygen pressure on the texture of a magnetite film grown by reactive deposition on a SiO2/Si(100) surface”, Phys. Solid State 57, 2532–2536 (2015).

    Article  Google Scholar 

  21. V. A. Vikulov, V. V. Balashev, T. A. Pisarenko, A. A. Dimitriev, and V. V. Korobtsov, “The effect of synthesis temperature on structural and magnetic properties of Fe3O4 Films Grown on the SiO2/Si(001) surface”, Tech. Phys. Lett. 38, 336–339 (2012).

    Article  Google Scholar 

  22. A. Ishizaka and Y. Shiraki, “Low temperature surface cleaning of silicon and its application to silicon MBE”, J. Electrochem. Soc. 133, 666–671 (1986).

    Article  Google Scholar 

  23. H. A. Kobayashi, O. Maida, M. Takahashi, and H. Iwasa, “Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density”, J. Appl. Phys. 94, 7328–7335 (2003).

    Article  Google Scholar 

  24. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth”, J. Vac. Sci. Technol. A 21, S117–S128 (2003).

    Article  Google Scholar 

  25. R. D. Heidenreich, Fundamentals of Transmission Electron Microscopy (Interscience Publishers, New York, 1964).

    Google Scholar 

  26. V. V. Balashev, V. V. Korobtsov, T. A. Pisarenko, and L. A. Chebotkevich, “Growth of Fe3O4 films on the Si(111) surface covered by a thin SiO2 layer”, Tech. Phys. Lett. 56, 1501–1507 (2011).

    Google Scholar 

  27. J. T. Drotar, T.-M. Lu, and G.-C. Wang, “Real-time observation of initial stages of copper film growth on silicon oxide using reflection high-energy electron diffraction”, J. Appl. Phys. 96, 7071–7079 (2004).

    Article  Google Scholar 

  28. M. Zies, R. Höhne, H. C. Semmelhack, H. Reckentin, M. H. Hong, and P. Esquinazi, “Mechanism of grainboundary magnetoresistance in Fe3O4 films”, Eur. Phys. J. B 28, 415–422 (2002).

    Article  Google Scholar 

  29. H. Liu, E. Y. Jiang, and H. L. Bai, “Structures and transport properties of polycrystalline Fe3O4 films”, J. Phys.: Condens. Matter 15, 8003–8009 (2003).

    Google Scholar 

  30. H. Liu, E. Y. Jiang, H. L. Bai, R. K. Zheng, and X. X. Zhang, “Thickness dependence of magnetic and magneto-transport properties of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature”, J. Phys. D: Appl. Phys. 36, 2950–2953 (2003).

    Article  Google Scholar 

  31. V. A. Vikulov, A. A. Dimitriev, V. V. Balashev, T. A. Pisarenko, and V. V. Korobtsov, “Low-temperature conducting channel switching in hybrid Fe3O4/SiO2/n-Si structures”, Mat. Sci. Eng., B 211, 33–36 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Balashev.

Additional information

Original Russian Text © V.V. Balashev, V.A. Vikulov, A.A. Dimitriev, T.A. Pisarenko, E.V. Pustovalov, V.V. Korobtsov, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 7, pp. 679–685.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balashev, V.V., Vikulov, V.A., Dimitriev, A.A. et al. Evolution of the structural and magnetotransport properties of magnetite films depending on the temperature of their synthesis on the SiO2/Si(001) surface. Phys. Metals Metallogr. 118, 644–651 (2017). https://doi.org/10.1134/S0031918X17050027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17050027

Keywords

Navigation